Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 4 x - 2 x^{2} - 244 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.175193215558$, $\pm0.703342933852$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.10496.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $366$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3472$ | $13776896$ | $51334634512$ | $191853967671296$ | $713385747734100112$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $58$ | $3702$ | $226162$ | $13856430$ | $844647018$ | $51520472742$ | $3142748965666$ | $191707310689374$ | $11694145931152282$ | $713342912141100502$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 366 curves (of which all are hyperelliptic):
- $y^2=39 x^6+50 x^5+17 x^4+29 x^3+44 x^2+48 x+21$
- $y^2=10 x^6+9 x^5+19 x^4+47 x^3+49 x^2+60 x+47$
- $y^2=39 x^6+13 x^5+49 x^4+35 x^3+59 x^2+59 x+28$
- $y^2=4 x^6+36 x^5+15 x^4+30 x^3+30 x^2+18 x+20$
- $y^2=15 x^6+39 x^5+44 x^4+8 x^3+4 x^2+21 x+49$
- $y^2=46 x^5+36 x^4+35 x^3+36 x^2+15 x+3$
- $y^2=13 x^6+x^5+57 x^4+49 x^3+x^2+49 x$
- $y^2=43 x^6+42 x^5+40 x^4+24 x^3+54 x^2+57 x+35$
- $y^2=17 x^5+36 x^4+18 x^3+55 x^2+55 x+35$
- $y^2=30 x^6+33 x^5+9 x^4+14 x^2+50 x+20$
- $y^2=22 x^6+52 x^5+24 x^4+9 x^3+58 x^2+7 x+31$
- $y^2=10 x^6+25 x^5+39 x^4+19 x^3+29 x^2+31 x+11$
- $y^2=27 x^5+50 x^4+25 x^3+10 x^2+7 x+19$
- $y^2=3 x^6+13 x^5+14 x^4+43 x^3+50 x^2+58 x+10$
- $y^2=28 x^6+36 x^5+8 x^4+10 x^3+22 x^2+14 x+30$
- $y^2=25 x^6+2 x^5+42 x^4+39 x^3+53 x^2+35$
- $y^2=17 x^6+2 x^5+35 x^4+47 x^3+46 x^2+51 x+28$
- $y^2=45 x^6+23 x^5+21 x^4+54 x^3+16 x^2+19 x+35$
- $y^2=59 x^6+39 x^5+37 x^4+16 x^3+47 x^2+13 x+17$
- $y^2=44 x^6+11 x^5+4 x^4+51 x^3+58 x^2+45 x+14$
- and 346 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is 4.0.10496.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.e_ac | $2$ | (not in LMFDB) |