Properties

Label 2-7350-1.1-c1-0-7
Degree $2$
Conductor $7350$
Sign $1$
Analytic cond. $58.6900$
Root an. cond. $7.66094$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s − 2·11-s + 12-s − 4·13-s + 16-s − 5·17-s − 18-s − 4·19-s + 2·22-s + 5·23-s − 24-s + 4·26-s + 27-s − 6·29-s − 11·31-s − 32-s − 2·33-s + 5·34-s + 36-s + 8·37-s + 4·38-s − 4·39-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.603·11-s + 0.288·12-s − 1.10·13-s + 1/4·16-s − 1.21·17-s − 0.235·18-s − 0.917·19-s + 0.426·22-s + 1.04·23-s − 0.204·24-s + 0.784·26-s + 0.192·27-s − 1.11·29-s − 1.97·31-s − 0.176·32-s − 0.348·33-s + 0.857·34-s + 1/6·36-s + 1.31·37-s + 0.648·38-s − 0.640·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(58.6900\)
Root analytic conductor: \(7.66094\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7350,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.155735625\)
\(L(\frac12)\) \(\approx\) \(1.155735625\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 11 T + p T^{2} \) 1.31.l
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 9 T + p T^{2} \) 1.79.aj
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 11 T + p T^{2} \) 1.89.al
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.86274562979873781100038969042, −7.33798766499990474972544031089, −6.84447839656809310984000229659, −5.89777984749581056236585265448, −5.07727140701149585704440551107, −4.28856601028708980310511363608, −3.39884071482364505378277622720, −2.31453756307238962736166452504, −2.10975701369475299698429777775, −0.55152933939773709777662125811, 0.55152933939773709777662125811, 2.10975701369475299698429777775, 2.31453756307238962736166452504, 3.39884071482364505378277622720, 4.28856601028708980310511363608, 5.07727140701149585704440551107, 5.89777984749581056236585265448, 6.84447839656809310984000229659, 7.33798766499990474972544031089, 7.86274562979873781100038969042

Graph of the $Z$-function along the critical line