L(s) = 1 | − 2-s − 3-s + 4-s + 5-s + 6-s + 7-s − 8-s + 9-s − 10-s + 5·11-s − 12-s − 13-s − 14-s − 15-s + 16-s − 17-s − 18-s − 6·19-s + 20-s − 21-s − 5·22-s + 6·23-s + 24-s − 4·25-s + 26-s − 27-s + 28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.50·11-s − 0.288·12-s − 0.277·13-s − 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 1.37·19-s + 0.223·20-s − 0.218·21-s − 1.06·22-s + 1.25·23-s + 0.204·24-s − 4/5·25-s + 0.196·26-s − 0.192·27-s + 0.188·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.085658749\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.085658749\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 + T \) | |
| 3 | \( 1 + T \) | |
| 7 | \( 1 - T \) | |
| 17 | \( 1 + T \) | |
good | 5 | \( 1 - T + p T^{2} \) | 1.5.ab |
| 11 | \( 1 - 5 T + p T^{2} \) | 1.11.af |
| 13 | \( 1 + T + p T^{2} \) | 1.13.b |
| 19 | \( 1 + 6 T + p T^{2} \) | 1.19.g |
| 23 | \( 1 - 6 T + p T^{2} \) | 1.23.ag |
| 29 | \( 1 - 6 T + p T^{2} \) | 1.29.ag |
| 31 | \( 1 - 4 T + p T^{2} \) | 1.31.ae |
| 37 | \( 1 - 11 T + p T^{2} \) | 1.37.al |
| 41 | \( 1 + p T^{2} \) | 1.41.a |
| 43 | \( 1 + 9 T + p T^{2} \) | 1.43.j |
| 47 | \( 1 - 4 T + p T^{2} \) | 1.47.ae |
| 53 | \( 1 + 7 T + p T^{2} \) | 1.53.h |
| 59 | \( 1 - 12 T + p T^{2} \) | 1.59.am |
| 61 | \( 1 - 6 T + p T^{2} \) | 1.61.ag |
| 67 | \( 1 - 13 T + p T^{2} \) | 1.67.an |
| 71 | \( 1 - 4 T + p T^{2} \) | 1.71.ae |
| 73 | \( 1 + 13 T + p T^{2} \) | 1.73.n |
| 79 | \( 1 - 15 T + p T^{2} \) | 1.79.ap |
| 83 | \( 1 - 13 T + p T^{2} \) | 1.83.an |
| 89 | \( 1 - 13 T + p T^{2} \) | 1.89.an |
| 97 | \( 1 + 9 T + p T^{2} \) | 1.97.j |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35387562230545072304941766003, −9.581256339132613227623171192888, −8.820406253413013444901380125487, −7.935662722795754908247411069718, −6.61646570611968051527750435709, −6.40957134211284429055898490510, −5.04624389716027195960079680684, −4.00468230936443247235620705298, −2.32730756193452472713602841520, −1.06706099447121458241353739757,
1.06706099447121458241353739757, 2.32730756193452472713602841520, 4.00468230936443247235620705298, 5.04624389716027195960079680684, 6.40957134211284429055898490510, 6.61646570611968051527750435709, 7.935662722795754908247411069718, 8.820406253413013444901380125487, 9.581256339132613227623171192888, 10.35387562230545072304941766003