Properties

Label 2-714-1.1-c1-0-3
Degree $2$
Conductor $714$
Sign $1$
Analytic cond. $5.70131$
Root an. cond. $2.38774$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s + 7-s − 8-s + 9-s − 10-s + 5·11-s − 12-s − 13-s − 14-s − 15-s + 16-s − 17-s − 18-s − 6·19-s + 20-s − 21-s − 5·22-s + 6·23-s + 24-s − 4·25-s + 26-s − 27-s + 28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.50·11-s − 0.288·12-s − 0.277·13-s − 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 1.37·19-s + 0.223·20-s − 0.218·21-s − 1.06·22-s + 1.25·23-s + 0.204·24-s − 4/5·25-s + 0.196·26-s − 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(714\)    =    \(2 \cdot 3 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(5.70131\)
Root analytic conductor: \(2.38774\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 714,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.085658749\)
\(L(\frac12)\) \(\approx\) \(1.085658749\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 + T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 7 T + p T^{2} \) 1.53.h
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 - 15 T + p T^{2} \) 1.79.ap
83 \( 1 - 13 T + p T^{2} \) 1.83.an
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.35387562230545072304941766003, −9.581256339132613227623171192888, −8.820406253413013444901380125487, −7.935662722795754908247411069718, −6.61646570611968051527750435709, −6.40957134211284429055898490510, −5.04624389716027195960079680684, −4.00468230936443247235620705298, −2.32730756193452472713602841520, −1.06706099447121458241353739757, 1.06706099447121458241353739757, 2.32730756193452472713602841520, 4.00468230936443247235620705298, 5.04624389716027195960079680684, 6.40957134211284429055898490510, 6.61646570611968051527750435709, 7.935662722795754908247411069718, 8.820406253413013444901380125487, 9.581256339132613227623171192888, 10.35387562230545072304941766003

Graph of the $Z$-function along the critical line