| L(s) = 1 | − 3-s + 5-s − 7-s + 3·9-s − 2·11-s + 8·13-s − 15-s + 6·19-s + 21-s + 3·23-s − 8·27-s − 6·29-s + 2·33-s − 35-s + 12·37-s − 8·39-s − 14·41-s + 18·43-s + 3·45-s − 6·49-s + 6·53-s − 2·55-s − 6·57-s − 10·59-s − 5·61-s − 3·63-s + 8·65-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 0.447·5-s − 0.377·7-s + 9-s − 0.603·11-s + 2.21·13-s − 0.258·15-s + 1.37·19-s + 0.218·21-s + 0.625·23-s − 1.53·27-s − 1.11·29-s + 0.348·33-s − 0.169·35-s + 1.97·37-s − 1.28·39-s − 2.18·41-s + 2.74·43-s + 0.447·45-s − 6/7·49-s + 0.824·53-s − 0.269·55-s − 0.794·57-s − 1.30·59-s − 0.640·61-s − 0.377·63-s + 0.992·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 313600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 313600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.863379929\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.863379929\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81545769711213423634493337406, −10.80723463763147944051272985690, −10.11252841241293553378422087815, −9.542037616438129192655458189346, −9.394540302613449384346049926533, −9.023995278603867748844269835958, −8.087079864340594389865829294989, −7.980099964603997934496482500941, −7.40026909795747506512597950255, −6.82420590118817994838208572581, −6.35585420377380600562678516861, −5.99838216688869170657882192375, −5.33030504777728677052733581525, −5.27036316245696335354382558959, −4.25043224926279200672368264577, −3.81197437556956402118733780452, −3.33099314948671508783093821856, −2.48723732736756050385556471902, −1.55836194380666520755259668909, −0.909456746516219948911550141527,
0.909456746516219948911550141527, 1.55836194380666520755259668909, 2.48723732736756050385556471902, 3.33099314948671508783093821856, 3.81197437556956402118733780452, 4.25043224926279200672368264577, 5.27036316245696335354382558959, 5.33030504777728677052733581525, 5.99838216688869170657882192375, 6.35585420377380600562678516861, 6.82420590118817994838208572581, 7.40026909795747506512597950255, 7.980099964603997934496482500941, 8.087079864340594389865829294989, 9.023995278603867748844269835958, 9.394540302613449384346049926533, 9.542037616438129192655458189346, 10.11252841241293553378422087815, 10.80723463763147944051272985690, 10.81545769711213423634493337406