L(s) = 1 | − 2·3-s − 2·11-s − 2·13-s − 8·17-s + 2·19-s + 2·23-s + 2·27-s + 12·29-s − 10·31-s + 4·33-s + 4·39-s + 8·41-s − 18·43-s + 16·47-s − 2·49-s + 16·51-s + 8·53-s − 4·57-s + 6·59-s − 4·61-s − 12·67-s − 4·69-s − 22·71-s − 8·73-s + 20·79-s − 81-s − 24·87-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 0.603·11-s − 0.554·13-s − 1.94·17-s + 0.458·19-s + 0.417·23-s + 0.384·27-s + 2.22·29-s − 1.79·31-s + 0.696·33-s + 0.640·39-s + 1.24·41-s − 2.74·43-s + 2.33·47-s − 2/7·49-s + 2.24·51-s + 1.09·53-s − 0.529·57-s + 0.781·59-s − 0.512·61-s − 1.46·67-s − 0.481·69-s − 2.61·71-s − 0.936·73-s + 2.25·79-s − 1/9·81-s − 2.57·87-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 27040000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27040000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.964440243132471251528253197458, −7.48533106312880452912422930582, −7.32579410472412642309612913204, −6.91833388743242358929560553309, −6.42162316749498655354221516106, −6.39902656240681212225221274967, −5.69362044319817163720997871446, −5.57468121123883864828390769595, −5.16537759416049391161042639985, −4.80103717676258842866044129916, −4.35974320464378628524015949108, −4.20725077451448409958673450553, −3.45467662026697687670093474337, −3.02950296503356317686293103477, −2.47028988187206036669265766765, −2.32749012593198099361295159859, −1.52956659879690338592356178889, −0.948036892060061659836318088949, 0, 0,
0.948036892060061659836318088949, 1.52956659879690338592356178889, 2.32749012593198099361295159859, 2.47028988187206036669265766765, 3.02950296503356317686293103477, 3.45467662026697687670093474337, 4.20725077451448409958673450553, 4.35974320464378628524015949108, 4.80103717676258842866044129916, 5.16537759416049391161042639985, 5.57468121123883864828390769595, 5.69362044319817163720997871446, 6.39902656240681212225221274967, 6.42162316749498655354221516106, 6.91833388743242358929560553309, 7.32579410472412642309612913204, 7.48533106312880452912422930582, 7.964440243132471251528253197458