Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 8 x + 114 x^{2} + 584 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.445183836352$, $\pm0.720868823876$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.440208.1 |
Galois group: | $D_{4}$ |
Jacobians: | $276$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6036$ | $29286672$ | $151150717332$ | $806509025378304$ | $4297421862214574676$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $82$ | $5494$ | $388546$ | $28399966$ | $2072973202$ | $151334218582$ | $11047411305922$ | $806460038751934$ | $58871586204539602$ | $4297625832365159734$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 276 curves (of which all are hyperelliptic):
- $y^2=71 x^6+18 x^5+32 x^4+45 x^3+59 x^2+33 x+45$
- $y^2=42 x^6+58 x^5+63 x^4+8 x^3+25 x^2+23 x+61$
- $y^2=9 x^6+70 x^5+57 x^4+64 x^3+32 x^2+4 x+9$
- $y^2=7 x^6+51 x^5+46 x^4+4 x^3+18 x^2+22 x+46$
- $y^2=33 x^6+52 x^5+52 x^4+46 x^3+39 x^2+17 x+64$
- $y^2=55 x^6+45 x^5+20 x^4+20 x^3+14 x^2+70 x+37$
- $y^2=25 x^6+28 x^5+23 x^4+48 x^3+69 x^2+8 x+23$
- $y^2=55 x^6+10 x^5+60 x^4+26 x^3+23 x^2+19 x+11$
- $y^2=50 x^6+18 x^5+28 x^4+3 x^3+33 x^2+18$
- $y^2=70 x^6+40 x^5+44 x^4+14 x^3+36 x^2+13 x+23$
- $y^2=23 x^6+43 x^5+x^4+70 x^3+4 x^2+17 x+30$
- $y^2=31 x^6+40 x^5+40 x^4+3 x^3+67 x^2+8 x+68$
- $y^2=60 x^6+13 x^5+27 x^4+14 x^3+26 x^2+39 x+6$
- $y^2=66 x^6+50 x^5+71 x^4+56 x^3+x^2+6 x+23$
- $y^2=6 x^6+54 x^5+21 x^4+x^3+43 x^2+15 x+31$
- $y^2=24 x^6+52 x^5+19 x^4+66 x^3+x^2+46 x+32$
- $y^2=44 x^6+65 x^5+49 x^4+31 x^3+41 x^2+47 x+8$
- $y^2=44 x^6+15 x^5+32 x^4+27 x^3+38 x^2+52 x+23$
- $y^2=33 x^6+27 x^5+33 x^4+51 x^3+15 x^2+27 x+24$
- $y^2=38 x^6+13 x^5+50 x^4+47 x^3+62 x^2+63 x+28$
- and 256 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is 4.0.440208.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.ai_ek | $2$ | (not in LMFDB) |