Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 6 x + 52 x^{2} - 354 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.225679481382$, $\pm0.620111820239$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.2938176.1 |
Galois group: | $D_{4}$ |
Jacobians: | $210$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3174$ | $12359556$ | $42110311806$ | $146905732054224$ | $511188259669453374$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $3550$ | $205038$ | $12123574$ | $715024314$ | $42180452926$ | $2488649189346$ | $146830441809694$ | $8662995586529622$ | $511116751157584750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 210 curves (of which all are hyperelliptic):
- $y^2=25 x^6+54 x^5+8 x^4+14 x^3+35 x^2+48 x+22$
- $y^2=17 x^6+14 x^5+13 x^4+8 x^3+29 x^2+19 x+4$
- $y^2=x^6+15 x^5+56 x^4+49 x^3+33 x^2+12 x+21$
- $y^2=22 x^6+10 x^5+46 x^4+51 x^3+43 x^2+17 x+41$
- $y^2=43 x^6+12 x^5+3 x^4+54 x^3+21 x^2+34 x+55$
- $y^2=15 x^6+49 x^5+40 x^4+25 x^3+6 x^2+18 x+12$
- $y^2=54 x^6+43 x^5+13 x^4+2 x^3+45 x^2+43 x+35$
- $y^2=41 x^6+27 x^5+8 x^4+37 x^3+49 x^2+21 x+47$
- $y^2=54 x^6+12 x^5+28 x^4+27 x^3+50 x^2+16 x+15$
- $y^2=20 x^6+48 x^5+48 x^4+21 x^3+16 x^2+22 x+47$
- $y^2=10 x^6+47 x^5+21 x^4+35 x^3+46 x^2+57 x+5$
- $y^2=14 x^6+25 x^5+57 x^4+6 x^3+7 x+38$
- $y^2=2 x^6+3 x^5+4 x^4+33 x^3+40 x^2+28 x+32$
- $y^2=16 x^6+24 x^5+13 x^4+21 x^3+33 x^2+3 x+57$
- $y^2=37 x^6+49 x^5+24 x^4+16 x^3+26 x^2+33 x+31$
- $y^2=34 x^6+4 x^5+36 x^4+21 x^3+22 x^2+57 x+31$
- $y^2=46 x^6+58 x^5+52 x^4+26 x^3+34 x^2+56 x+57$
- $y^2=38 x^6+54 x^5+28 x^4+3 x^3+2 x^2+53 x+44$
- $y^2=37 x^6+9 x^5+58 x^4+33 x^3+9 x^2+9 x+42$
- $y^2=51 x^6+27 x^5+44 x^4+18 x^3+10 x^2+40 x+54$
- and 190 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.2938176.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.g_ca | $2$ | (not in LMFDB) |