Properties

Label 2-4760-1.1-c1-0-76
Degree $2$
Conductor $4760$
Sign $1$
Analytic cond. $38.0087$
Root an. cond. $6.16512$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5-s + 7-s + 6·9-s + 6·11-s − 13-s + 3·15-s − 17-s + 5·19-s + 3·21-s + 6·23-s + 25-s + 9·27-s − 9·29-s + 31-s + 18·33-s + 35-s − 6·37-s − 3·39-s − 2·41-s − 8·43-s + 6·45-s + 5·47-s + 49-s − 3·51-s − 13·53-s + 6·55-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.447·5-s + 0.377·7-s + 2·9-s + 1.80·11-s − 0.277·13-s + 0.774·15-s − 0.242·17-s + 1.14·19-s + 0.654·21-s + 1.25·23-s + 1/5·25-s + 1.73·27-s − 1.67·29-s + 0.179·31-s + 3.13·33-s + 0.169·35-s − 0.986·37-s − 0.480·39-s − 0.312·41-s − 1.21·43-s + 0.894·45-s + 0.729·47-s + 1/7·49-s − 0.420·51-s − 1.78·53-s + 0.809·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4760\)    =    \(2^{3} \cdot 5 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(38.0087\)
Root analytic conductor: \(6.16512\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.033487144\)
\(L(\frac12)\) \(\approx\) \(5.033487144\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 5 T + p T^{2} \) 1.47.af
53 \( 1 + 13 T + p T^{2} \) 1.53.n
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.486271809744697755804468046703, −7.51574006180340724386541302098, −7.13923390305044343772136610789, −6.31046801799870618115267353819, −5.20089518767868451381609349484, −4.37106058411736640352693069634, −3.52170145300683028368215221425, −3.02297263612137677022366957495, −1.84004660972837261878261654597, −1.37343561648678528291507794497, 1.37343561648678528291507794497, 1.84004660972837261878261654597, 3.02297263612137677022366957495, 3.52170145300683028368215221425, 4.37106058411736640352693069634, 5.20089518767868451381609349484, 6.31046801799870618115267353819, 7.13923390305044343772136610789, 7.51574006180340724386541302098, 8.486271809744697755804468046703

Graph of the $Z$-function along the critical line