Properties

Label 2-4284-1.1-c1-0-17
Degree $2$
Conductor $4284$
Sign $1$
Analytic cond. $34.2079$
Root an. cond. $5.84875$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 7-s + 5·11-s + 13-s + 17-s + 3·19-s + 5·23-s + 4·25-s + 2·29-s − 3·35-s + 2·37-s − 7·41-s + 3·43-s − 12·47-s + 49-s − 8·53-s + 15·55-s + 8·59-s + 6·61-s + 3·65-s − 8·67-s − 2·73-s − 5·77-s + 12·79-s − 10·83-s + 3·85-s − 91-s + ⋯
L(s)  = 1  + 1.34·5-s − 0.377·7-s + 1.50·11-s + 0.277·13-s + 0.242·17-s + 0.688·19-s + 1.04·23-s + 4/5·25-s + 0.371·29-s − 0.507·35-s + 0.328·37-s − 1.09·41-s + 0.457·43-s − 1.75·47-s + 1/7·49-s − 1.09·53-s + 2.02·55-s + 1.04·59-s + 0.768·61-s + 0.372·65-s − 0.977·67-s − 0.234·73-s − 0.569·77-s + 1.35·79-s − 1.09·83-s + 0.325·85-s − 0.104·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4284 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4284 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4284\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(34.2079\)
Root analytic conductor: \(5.84875\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4284,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.923019906\)
\(L(\frac12)\) \(\approx\) \(2.923019906\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - T + p T^{2} \) 1.13.ab
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.660521073599250388876941205613, −7.56159279780586624950495690471, −6.60778074278395561608464853214, −6.37654696544159939234913717859, −5.49619361842659458666039074243, −4.77853450422394960525408875248, −3.68054222771730173646321769746, −2.95122974888866412245072902936, −1.80794794923846240522787037360, −1.06291647749258958169255136559, 1.06291647749258958169255136559, 1.80794794923846240522787037360, 2.95122974888866412245072902936, 3.68054222771730173646321769746, 4.77853450422394960525408875248, 5.49619361842659458666039074243, 6.37654696544159939234913717859, 6.60778074278395561608464853214, 7.56159279780586624950495690471, 8.660521073599250388876941205613

Graph of the $Z$-function along the critical line