L(s) = 1 | − 5-s − 3·7-s − 11-s + 2·13-s + 8·17-s − 3·23-s − 6·25-s − 9·29-s − 5·31-s + 3·35-s − 15·37-s − 41-s + 6·43-s − 4·47-s − 4·49-s + 2·53-s + 55-s + 16·59-s − 9·61-s − 2·65-s + 7·67-s + 16·71-s − 8·73-s + 3·77-s − 2·79-s − 18·83-s − 8·85-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 1.13·7-s − 0.301·11-s + 0.554·13-s + 1.94·17-s − 0.625·23-s − 6/5·25-s − 1.67·29-s − 0.898·31-s + 0.507·35-s − 2.46·37-s − 0.156·41-s + 0.914·43-s − 0.583·47-s − 4/7·49-s + 0.274·53-s + 0.134·55-s + 2.08·59-s − 1.15·61-s − 0.248·65-s + 0.855·67-s + 1.89·71-s − 0.936·73-s + 0.341·77-s − 0.225·79-s − 1.97·83-s − 0.867·85-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 17740944 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17740944 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.069567686358007043332913463112, −7.980417427901968487220631667305, −7.39211484094197334146557102347, −7.23480251098536443094184727252, −6.81717893586566511331489717987, −6.41199261848200123533692486822, −5.88631580784320038455847211756, −5.67331722563642081543327063870, −5.21647317045235709310520704883, −5.19435463610605986877220007971, −4.07471998921469241049956491377, −4.00162063618218934632081074055, −3.57437301277384804320749974122, −3.33996364071000595972697818274, −2.84354298840597988584390405433, −2.18711423332048303474777778081, −1.66168686493448599193665905043, −1.16731681798801957133422056420, 0, 0,
1.16731681798801957133422056420, 1.66168686493448599193665905043, 2.18711423332048303474777778081, 2.84354298840597988584390405433, 3.33996364071000595972697818274, 3.57437301277384804320749974122, 4.00162063618218934632081074055, 4.07471998921469241049956491377, 5.19435463610605986877220007971, 5.21647317045235709310520704883, 5.67331722563642081543327063870, 5.88631580784320038455847211756, 6.41199261848200123533692486822, 6.81717893586566511331489717987, 7.23480251098536443094184727252, 7.39211484094197334146557102347, 7.980417427901968487220631667305, 8.069567686358007043332913463112