Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 5 x + 39 x^{2} + 155 x^{3} + 961 x^{4}$ |
Frobenius angles: | $\pm0.415889879915$, $\pm0.751390401856$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.133341.1 |
Galois group: | $D_{4}$ |
Jacobians: | $68$ |
Isomorphism classes: | 100 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1161$ | $976401$ | $887652999$ | $853793350029$ | $819110236748976$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $37$ | $1015$ | $29797$ | $924499$ | $28611052$ | $887504371$ | $27513160327$ | $852890146099$ | $26439622602307$ | $819628234209550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 68 curves (of which all are hyperelliptic):
- $y^2=13 x^6+15 x^5+28 x^4+5 x^3+12 x^2+21 x+6$
- $y^2=9 x^6+22 x^5+18 x^4+x^3+23 x^2+11 x+10$
- $y^2=20 x^6+9 x^5+18 x^4+4 x^3+x^2+16 x$
- $y^2=8 x^6+22 x^4+8 x^3+11 x^2+19 x+22$
- $y^2=13 x^5+18 x^4+10 x^3+15 x^2+27 x+4$
- $y^2=5 x^6+21 x^4+9 x^3+14 x^2+25 x+1$
- $y^2=14 x^6+13 x^5+23 x^4+26 x^3+x^2+27 x+20$
- $y^2=x^6+25 x^5+29 x^4+9 x^3+16 x^2+14 x+9$
- $y^2=17 x^6+23 x^5+9 x^4+27 x^3+8 x^2+11 x+15$
- $y^2=x^6+2 x^5+3 x^4+9 x^3+29 x^2+29 x+4$
- $y^2=7 x^6+29 x^5+6 x^4+25 x^2+18 x+18$
- $y^2=2 x^6+18 x^5+20 x^4+8 x^3+3 x^2+27 x+19$
- $y^2=30 x^6+20 x^5+29 x^4+13 x^3+17 x^2+3 x+17$
- $y^2=6 x^6+24 x^5+16 x^4+8 x^3+25 x^2+3 x+7$
- $y^2=5 x^6+x^4+19 x^3+3 x^2+21 x+5$
- $y^2=26 x^6+8 x^5+24 x^4+8 x^3+25 x^2+11 x+20$
- $y^2=2 x^6+26 x^5+28 x^4+17 x^3+30 x^2+24 x+7$
- $y^2=15 x^6+17 x^5+26 x^4+17 x^3+3 x^2+29 x$
- $y^2=3 x^6+8 x^5+16 x^4+6 x^3+21 x^2+25 x+27$
- $y^2=26 x^6+21 x^5+28 x^4+20 x^3+5 x^2+12 x+19$
- and 48 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is 4.0.133341.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.31.af_bn | $2$ | (not in LMFDB) |