Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 8 x + 45 x^{2} + 584 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.369387024164$, $\pm0.834005354106$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.334113.1 |
Galois group: | $D_{4}$ |
Jacobians: | $324$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5967$ | $28540161$ | $151795610928$ | $806630598883161$ | $4297295989610003367$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $82$ | $5356$ | $390202$ | $28404244$ | $2072912482$ | $151334399086$ | $11047394482066$ | $806460177351268$ | $58871586953271850$ | $4297625825334749596$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 324 curves (of which all are hyperelliptic):
- $y^2=57 x^6+9 x^5+47 x^4+28 x^3+68 x^2+12 x+28$
- $y^2=18 x^6+61 x^5+19 x^4+59 x^3+63 x^2+17 x+56$
- $y^2=64 x^6+48 x^5+40 x^4+35 x^3+44 x^2+54 x+37$
- $y^2=35 x^6+26 x^5+10 x^4+9 x^3+66 x^2+51 x+23$
- $y^2=8 x^6+51 x^5+35 x^4+17 x^3+27 x^2+9$
- $y^2=61 x^6+26 x^5+3 x^4+65 x^3+3 x^2+52 x+49$
- $y^2=4 x^6+52 x^5+10 x^4+6 x^3+4 x^2+20 x+47$
- $y^2=20 x^6+11 x^5+5 x^4+65 x^3+26 x^2+13 x+21$
- $y^2=65 x^6+63 x^5+5 x^4+9 x^3+61 x^2+12 x+67$
- $y^2=7 x^6+21 x^5+51 x^4+53 x^3+32 x^2+53 x+67$
- $y^2=48 x^6+10 x^5+37 x^4+14 x^3+62 x^2+32 x+28$
- $y^2=18 x^6+22 x^5+70 x^4+32 x^3+67 x^2+21 x+69$
- $y^2=27 x^6+38 x^5+64 x^4+50 x^3+27 x^2+37 x+33$
- $y^2=x^6+49 x^5+22 x^4+72 x^3+54 x^2+38 x+64$
- $y^2=38 x^6+72 x^5+71 x^4+27 x^3+53 x^2+39 x+14$
- $y^2=45 x^6+49 x^5+62 x^4+28 x^3+47 x^2+49 x+53$
- $y^2=9 x^6+22 x^5+54 x^4+29 x^3+32 x^2+22 x+5$
- $y^2=60 x^6+16 x^5+59 x^4+48 x^3+43 x^2+58 x+25$
- $y^2=52 x^6+6 x^5+32 x^4+43 x^3+57 x^2+47 x+35$
- $y^2=64 x^6+64 x^5+59 x^4+56 x^3+13 x^2+20 x+20$
- and 304 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is 4.0.334113.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.ai_bt | $2$ | (not in LMFDB) |