Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 + x + 19 x^{2} + 89 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.277968510535$, $\pm0.744741055041$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.6498557.1 |
Galois group: | $D_{4}$ |
Jacobians: | $189$ |
Isomorphism classes: | 189 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8031$ | $63051381$ | $497129637447$ | $3938514161026293$ | $31181463605572224816$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $91$ | $7959$ | $705181$ | $62772923$ | $5584013546$ | $496980442071$ | $44231332214657$ | $3936588585573139$ | $350356404417707623$ | $31181719940401074414$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 189 curves (of which all are hyperelliptic):
- $y^2=72 x^6+22 x^5+82 x^4+28 x^3+52 x^2+62 x+72$
- $y^2=36 x^6+35 x^5+52 x^4+43 x^3+32 x^2+51 x+58$
- $y^2=75 x^6+85 x^5+2 x^4+27 x^3+76 x^2+32$
- $y^2=69 x^6+85 x^5+82 x^4+40 x^3+66 x^2+43 x+20$
- $y^2=68 x^6+74 x^5+12 x^4+9 x^3+23 x^2+25 x+76$
- $y^2=34 x^6+51 x^5+22 x^4+72 x^3+56 x^2+76 x+65$
- $y^2=42 x^6+70 x^5+80 x^4+66 x^3+40 x^2+20 x+35$
- $y^2=29 x^6+87 x^5+78 x^4+50 x^3+85 x^2+25 x+52$
- $y^2=81 x^6+6 x^5+67 x^4+72 x^3+23 x^2+18 x+20$
- $y^2=66 x^6+64 x^5+37 x^4+38 x^3+75 x^2+27 x+59$
- $y^2=50 x^6+82 x^5+14 x^4+78 x^3+32 x^2+71 x+45$
- $y^2=44 x^6+10 x^5+81 x^4+29 x^3+75 x^2+82 x+43$
- $y^2=48 x^6+29 x^5+25 x^4+51 x^3+87 x^2+67 x+19$
- $y^2=86 x^6+31 x^5+61 x^4+10 x^2+56 x+6$
- $y^2=6 x^6+55 x^5+53 x^4+84 x^3+54 x^2+15 x+33$
- $y^2=73 x^6+72 x^5+53 x^4+73 x^3+56 x^2+9 x+6$
- $y^2=74 x^6+42 x^5+59 x^4+66 x^3+44 x^2+52 x+81$
- $y^2=79 x^6+54 x^5+20 x^4+80 x^3+55 x^2+49 x+6$
- $y^2=30 x^6+37 x^5+46 x^4+69 x^3+82 x^2+51 x+86$
- $y^2=87 x^6+9 x^5+40 x^4+52 x^3+86 x^2+76 x+71$
- and 169 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is 4.0.6498557.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.ab_t | $2$ | (not in LMFDB) |