Properties

Label 2-4200-1.1-c1-0-39
Degree $2$
Conductor $4200$
Sign $-1$
Analytic cond. $33.5371$
Root an. cond. $5.79112$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s − 3·11-s − 2·13-s + 2·19-s − 21-s + 7·23-s − 27-s − 3·29-s − 6·31-s + 3·33-s − 3·37-s + 2·39-s + 5·43-s + 2·47-s + 49-s + 2·53-s − 2·57-s − 10·59-s − 8·61-s + 63-s − 9·67-s − 7·69-s + 9·71-s − 8·73-s − 3·77-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.904·11-s − 0.554·13-s + 0.458·19-s − 0.218·21-s + 1.45·23-s − 0.192·27-s − 0.557·29-s − 1.07·31-s + 0.522·33-s − 0.493·37-s + 0.320·39-s + 0.762·43-s + 0.291·47-s + 1/7·49-s + 0.274·53-s − 0.264·57-s − 1.30·59-s − 1.02·61-s + 0.125·63-s − 1.09·67-s − 0.842·69-s + 1.06·71-s − 0.936·73-s − 0.341·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4200\)    =    \(2^{3} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(33.5371\)
Root analytic conductor: \(5.79112\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.73437464907961643851036901764, −7.46287741183482478046701039351, −6.61161774930155236019901290654, −5.61022432071550987249179652844, −5.17016472851633920308383166012, −4.44917986958329971027596031720, −3.35743140263865319414545423618, −2.44190990683377745139512896175, −1.32194709001282814131560780686, 0, 1.32194709001282814131560780686, 2.44190990683377745139512896175, 3.35743140263865319414545423618, 4.44917986958329971027596031720, 5.17016472851633920308383166012, 5.61022432071550987249179652844, 6.61161774930155236019901290654, 7.46287741183482478046701039351, 7.73437464907961643851036901764

Graph of the $Z$-function along the critical line