Properties

Label 2-4080-1.1-c1-0-55
Degree $2$
Conductor $4080$
Sign $-1$
Analytic cond. $32.5789$
Root an. cond. $5.70779$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 7-s + 9-s − 3·11-s − 2·13-s − 15-s − 17-s − 19-s + 21-s + 2·23-s + 25-s + 27-s + 5·29-s − 6·31-s − 3·33-s − 35-s + 37-s − 2·39-s + 5·41-s − 4·43-s − 45-s − 13·47-s − 6·49-s − 51-s + 11·53-s + 3·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 0.377·7-s + 1/3·9-s − 0.904·11-s − 0.554·13-s − 0.258·15-s − 0.242·17-s − 0.229·19-s + 0.218·21-s + 0.417·23-s + 1/5·25-s + 0.192·27-s + 0.928·29-s − 1.07·31-s − 0.522·33-s − 0.169·35-s + 0.164·37-s − 0.320·39-s + 0.780·41-s − 0.609·43-s − 0.149·45-s − 1.89·47-s − 6/7·49-s − 0.140·51-s + 1.51·53-s + 0.404·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4080\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 17\)
Sign: $-1$
Analytic conductor: \(32.5789\)
Root analytic conductor: \(5.70779\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
17 \( 1 + T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 13 T + p T^{2} \) 1.47.n
53 \( 1 - 11 T + p T^{2} \) 1.53.al
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.083517553920619891559579827311, −7.44983884473116758311550028817, −6.83157561914238722165659910331, −5.77984598389767781672517790666, −4.88515854832004268144168999284, −4.35113750685884003274653216809, −3.25648294685258233934926988556, −2.59118279103198049381730248293, −1.53973951741459012301822936869, 0, 1.53973951741459012301822936869, 2.59118279103198049381730248293, 3.25648294685258233934926988556, 4.35113750685884003274653216809, 4.88515854832004268144168999284, 5.77984598389767781672517790666, 6.83157561914238722165659910331, 7.44983884473116758311550028817, 8.083517553920619891559579827311

Graph of the $Z$-function along the critical line