Properties

Label 2-4032-1.1-c1-0-49
Degree $2$
Conductor $4032$
Sign $-1$
Analytic cond. $32.1956$
Root an. cond. $5.67412$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 7-s − 6·13-s + 2·17-s + 4·19-s − 4·23-s − 25-s − 10·29-s + 8·31-s − 2·35-s − 6·37-s + 2·41-s − 4·43-s + 8·47-s + 49-s − 10·53-s − 12·59-s + 2·61-s − 12·65-s + 12·67-s − 12·71-s − 14·73-s + 8·79-s − 12·83-s + 4·85-s + 2·89-s + 6·91-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.377·7-s − 1.66·13-s + 0.485·17-s + 0.917·19-s − 0.834·23-s − 1/5·25-s − 1.85·29-s + 1.43·31-s − 0.338·35-s − 0.986·37-s + 0.312·41-s − 0.609·43-s + 1.16·47-s + 1/7·49-s − 1.37·53-s − 1.56·59-s + 0.256·61-s − 1.48·65-s + 1.46·67-s − 1.42·71-s − 1.63·73-s + 0.900·79-s − 1.31·83-s + 0.433·85-s + 0.211·89-s + 0.628·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(32.1956\)
Root analytic conductor: \(5.67412\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4032,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87217711477666533239680941273, −7.43480026375794518911823381319, −6.57496096219179217324955497704, −5.75031095261453353188258428649, −5.25920829435852943350078822060, −4.33332718559306155648553300645, −3.26579368115803240479996081869, −2.44532737536249838217022785372, −1.56513967917073670292696592474, 0, 1.56513967917073670292696592474, 2.44532737536249838217022785372, 3.26579368115803240479996081869, 4.33332718559306155648553300645, 5.25920829435852943350078822060, 5.75031095261453353188258428649, 6.57496096219179217324955497704, 7.43480026375794518911823381319, 7.87217711477666533239680941273

Graph of the $Z$-function along the critical line