| L(s) = 1 | − 2·2-s + 3·4-s − 4·5-s + 2·7-s − 4·8-s + 8·10-s + 11-s + 3·13-s − 4·14-s + 5·16-s − 4·17-s + 3·19-s − 12·20-s − 2·22-s − 3·23-s + 2·25-s − 6·26-s + 6·28-s − 2·29-s − 4·31-s − 6·32-s + 8·34-s − 8·35-s + 3·37-s − 6·38-s + 16·40-s − 6·41-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.78·5-s + 0.755·7-s − 1.41·8-s + 2.52·10-s + 0.301·11-s + 0.832·13-s − 1.06·14-s + 5/4·16-s − 0.970·17-s + 0.688·19-s − 2.68·20-s − 0.426·22-s − 0.625·23-s + 2/5·25-s − 1.17·26-s + 1.13·28-s − 0.371·29-s − 0.718·31-s − 1.06·32-s + 1.37·34-s − 1.35·35-s + 0.493·37-s − 0.973·38-s + 2.52·40-s − 0.937·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 13351716 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13351716 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.227839302657972865682218318146, −8.144214142345946146944784820603, −7.74309430036937936417494119079, −7.33449156432664284571101526990, −7.16417015302239535967104674234, −6.72654241750902818200843694655, −6.21569155671181032516734739000, −5.95607206450521569803776821254, −5.26095683055226901473017944884, −5.06888163991834312506339145999, −4.27722418500781214572824406804, −4.04202540316800303734456461956, −3.61054123261623889624678982531, −3.40684771147111673326485675938, −2.41118858544775018862521200770, −2.31827224799800900953116068903, −1.30320477199035875353320980268, −1.26158846800231853041360675265, 0, 0,
1.26158846800231853041360675265, 1.30320477199035875353320980268, 2.31827224799800900953116068903, 2.41118858544775018862521200770, 3.40684771147111673326485675938, 3.61054123261623889624678982531, 4.04202540316800303734456461956, 4.27722418500781214572824406804, 5.06888163991834312506339145999, 5.26095683055226901473017944884, 5.95607206450521569803776821254, 6.21569155671181032516734739000, 6.72654241750902818200843694655, 7.16417015302239535967104674234, 7.33449156432664284571101526990, 7.74309430036937936417494119079, 8.144214142345946146944784820603, 8.227839302657972865682218318146