Properties

Label 3654.2.a.x.1.1
Level $3654$
Weight $2$
Character 3654.1
Self dual yes
Analytic conductor $29.177$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3654,2,Mod(1,3654)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3654.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3654, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3654 = 2 \cdot 3^{2} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3654.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,2,-4,0,2,-2,0,4,1,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.1773368986\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1218)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 3654.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -2.00000 q^{5} +1.00000 q^{7} -1.00000 q^{8} +2.00000 q^{10} -1.56155 q^{11} +3.56155 q^{13} -1.00000 q^{14} +1.00000 q^{16} -2.00000 q^{17} -4.68466 q^{19} -2.00000 q^{20} +1.56155 q^{22} +4.68466 q^{23} -1.00000 q^{25} -3.56155 q^{26} +1.00000 q^{28} -1.00000 q^{29} +6.24621 q^{31} -1.00000 q^{32} +2.00000 q^{34} -2.00000 q^{35} +3.56155 q^{37} +4.68466 q^{38} +2.00000 q^{40} +1.12311 q^{41} -3.12311 q^{43} -1.56155 q^{44} -4.68466 q^{46} -8.68466 q^{47} +1.00000 q^{49} +1.00000 q^{50} +3.56155 q^{52} -6.68466 q^{53} +3.12311 q^{55} -1.00000 q^{56} +1.00000 q^{58} -4.68466 q^{59} +6.87689 q^{61} -6.24621 q^{62} +1.00000 q^{64} -7.12311 q^{65} -9.56155 q^{67} -2.00000 q^{68} +2.00000 q^{70} +10.2462 q^{71} -2.68466 q^{73} -3.56155 q^{74} -4.68466 q^{76} -1.56155 q^{77} +2.24621 q^{79} -2.00000 q^{80} -1.12311 q^{82} +15.8078 q^{83} +4.00000 q^{85} +3.12311 q^{86} +1.56155 q^{88} -6.87689 q^{89} +3.56155 q^{91} +4.68466 q^{92} +8.68466 q^{94} +9.36932 q^{95} -5.80776 q^{97} -1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 4 q^{5} + 2 q^{7} - 2 q^{8} + 4 q^{10} + q^{11} + 3 q^{13} - 2 q^{14} + 2 q^{16} - 4 q^{17} + 3 q^{19} - 4 q^{20} - q^{22} - 3 q^{23} - 2 q^{25} - 3 q^{26} + 2 q^{28} - 2 q^{29}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) −1.56155 −0.470826 −0.235413 0.971895i \(-0.575644\pi\)
−0.235413 + 0.971895i \(0.575644\pi\)
\(12\) 0 0
\(13\) 3.56155 0.987797 0.493899 0.869520i \(-0.335571\pi\)
0.493899 + 0.869520i \(0.335571\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −4.68466 −1.07473 −0.537367 0.843348i \(-0.680581\pi\)
−0.537367 + 0.843348i \(0.680581\pi\)
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) 1.56155 0.332924
\(23\) 4.68466 0.976819 0.488409 0.872615i \(-0.337577\pi\)
0.488409 + 0.872615i \(0.337577\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −3.56155 −0.698478
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 6.24621 1.12185 0.560926 0.827866i \(-0.310445\pi\)
0.560926 + 0.827866i \(0.310445\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) −2.00000 −0.338062
\(36\) 0 0
\(37\) 3.56155 0.585516 0.292758 0.956187i \(-0.405427\pi\)
0.292758 + 0.956187i \(0.405427\pi\)
\(38\) 4.68466 0.759952
\(39\) 0 0
\(40\) 2.00000 0.316228
\(41\) 1.12311 0.175400 0.0876998 0.996147i \(-0.472048\pi\)
0.0876998 + 0.996147i \(0.472048\pi\)
\(42\) 0 0
\(43\) −3.12311 −0.476269 −0.238135 0.971232i \(-0.576536\pi\)
−0.238135 + 0.971232i \(0.576536\pi\)
\(44\) −1.56155 −0.235413
\(45\) 0 0
\(46\) −4.68466 −0.690715
\(47\) −8.68466 −1.26679 −0.633394 0.773830i \(-0.718339\pi\)
−0.633394 + 0.773830i \(0.718339\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 3.56155 0.493899
\(53\) −6.68466 −0.918208 −0.459104 0.888382i \(-0.651830\pi\)
−0.459104 + 0.888382i \(0.651830\pi\)
\(54\) 0 0
\(55\) 3.12311 0.421119
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) 1.00000 0.131306
\(59\) −4.68466 −0.609891 −0.304945 0.952370i \(-0.598638\pi\)
−0.304945 + 0.952370i \(0.598638\pi\)
\(60\) 0 0
\(61\) 6.87689 0.880496 0.440248 0.897876i \(-0.354891\pi\)
0.440248 + 0.897876i \(0.354891\pi\)
\(62\) −6.24621 −0.793270
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −7.12311 −0.883513
\(66\) 0 0
\(67\) −9.56155 −1.16813 −0.584065 0.811707i \(-0.698539\pi\)
−0.584065 + 0.811707i \(0.698539\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) 2.00000 0.239046
\(71\) 10.2462 1.21600 0.608001 0.793936i \(-0.291972\pi\)
0.608001 + 0.793936i \(0.291972\pi\)
\(72\) 0 0
\(73\) −2.68466 −0.314216 −0.157108 0.987581i \(-0.550217\pi\)
−0.157108 + 0.987581i \(0.550217\pi\)
\(74\) −3.56155 −0.414022
\(75\) 0 0
\(76\) −4.68466 −0.537367
\(77\) −1.56155 −0.177955
\(78\) 0 0
\(79\) 2.24621 0.252719 0.126359 0.991985i \(-0.459671\pi\)
0.126359 + 0.991985i \(0.459671\pi\)
\(80\) −2.00000 −0.223607
\(81\) 0 0
\(82\) −1.12311 −0.124026
\(83\) 15.8078 1.73513 0.867564 0.497326i \(-0.165685\pi\)
0.867564 + 0.497326i \(0.165685\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) 3.12311 0.336773
\(87\) 0 0
\(88\) 1.56155 0.166462
\(89\) −6.87689 −0.728949 −0.364475 0.931213i \(-0.618751\pi\)
−0.364475 + 0.931213i \(0.618751\pi\)
\(90\) 0 0
\(91\) 3.56155 0.373352
\(92\) 4.68466 0.488409
\(93\) 0 0
\(94\) 8.68466 0.895754
\(95\) 9.36932 0.961272
\(96\) 0 0
\(97\) −5.80776 −0.589689 −0.294845 0.955545i \(-0.595268\pi\)
−0.294845 + 0.955545i \(0.595268\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 0.246211 0.0244989 0.0122495 0.999925i \(-0.496101\pi\)
0.0122495 + 0.999925i \(0.496101\pi\)
\(102\) 0 0
\(103\) 14.9309 1.47118 0.735591 0.677426i \(-0.236904\pi\)
0.735591 + 0.677426i \(0.236904\pi\)
\(104\) −3.56155 −0.349239
\(105\) 0 0
\(106\) 6.68466 0.649271
\(107\) −9.36932 −0.905766 −0.452883 0.891570i \(-0.649604\pi\)
−0.452883 + 0.891570i \(0.649604\pi\)
\(108\) 0 0
\(109\) −13.1231 −1.25697 −0.628483 0.777824i \(-0.716324\pi\)
−0.628483 + 0.777824i \(0.716324\pi\)
\(110\) −3.12311 −0.297776
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) −5.80776 −0.546348 −0.273174 0.961965i \(-0.588074\pi\)
−0.273174 + 0.961965i \(0.588074\pi\)
\(114\) 0 0
\(115\) −9.36932 −0.873693
\(116\) −1.00000 −0.0928477
\(117\) 0 0
\(118\) 4.68466 0.431258
\(119\) −2.00000 −0.183340
\(120\) 0 0
\(121\) −8.56155 −0.778323
\(122\) −6.87689 −0.622605
\(123\) 0 0
\(124\) 6.24621 0.560926
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −12.6847 −1.12558 −0.562791 0.826599i \(-0.690272\pi\)
−0.562791 + 0.826599i \(0.690272\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 7.12311 0.624738
\(131\) −15.1231 −1.32131 −0.660656 0.750689i \(-0.729722\pi\)
−0.660656 + 0.750689i \(0.729722\pi\)
\(132\) 0 0
\(133\) −4.68466 −0.406211
\(134\) 9.56155 0.825992
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) 3.56155 0.304284 0.152142 0.988359i \(-0.451383\pi\)
0.152142 + 0.988359i \(0.451383\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) −2.00000 −0.169031
\(141\) 0 0
\(142\) −10.2462 −0.859843
\(143\) −5.56155 −0.465080
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 2.68466 0.222184
\(147\) 0 0
\(148\) 3.56155 0.292758
\(149\) −0.438447 −0.0359190 −0.0179595 0.999839i \(-0.505717\pi\)
−0.0179595 + 0.999839i \(0.505717\pi\)
\(150\) 0 0
\(151\) 1.36932 0.111433 0.0557167 0.998447i \(-0.482256\pi\)
0.0557167 + 0.998447i \(0.482256\pi\)
\(152\) 4.68466 0.379976
\(153\) 0 0
\(154\) 1.56155 0.125834
\(155\) −12.4924 −1.00342
\(156\) 0 0
\(157\) 8.24621 0.658119 0.329060 0.944309i \(-0.393268\pi\)
0.329060 + 0.944309i \(0.393268\pi\)
\(158\) −2.24621 −0.178699
\(159\) 0 0
\(160\) 2.00000 0.158114
\(161\) 4.68466 0.369203
\(162\) 0 0
\(163\) −19.1231 −1.49784 −0.748919 0.662662i \(-0.769427\pi\)
−0.748919 + 0.662662i \(0.769427\pi\)
\(164\) 1.12311 0.0876998
\(165\) 0 0
\(166\) −15.8078 −1.22692
\(167\) 1.75379 0.135712 0.0678561 0.997695i \(-0.478384\pi\)
0.0678561 + 0.997695i \(0.478384\pi\)
\(168\) 0 0
\(169\) −0.315342 −0.0242570
\(170\) −4.00000 −0.306786
\(171\) 0 0
\(172\) −3.12311 −0.238135
\(173\) −10.0000 −0.760286 −0.380143 0.924928i \(-0.624125\pi\)
−0.380143 + 0.924928i \(0.624125\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) −1.56155 −0.117706
\(177\) 0 0
\(178\) 6.87689 0.515445
\(179\) 3.12311 0.233432 0.116716 0.993165i \(-0.462763\pi\)
0.116716 + 0.993165i \(0.462763\pi\)
\(180\) 0 0
\(181\) 10.4924 0.779896 0.389948 0.920837i \(-0.372493\pi\)
0.389948 + 0.920837i \(0.372493\pi\)
\(182\) −3.56155 −0.264000
\(183\) 0 0
\(184\) −4.68466 −0.345358
\(185\) −7.12311 −0.523701
\(186\) 0 0
\(187\) 3.12311 0.228384
\(188\) −8.68466 −0.633394
\(189\) 0 0
\(190\) −9.36932 −0.679722
\(191\) −3.12311 −0.225980 −0.112990 0.993596i \(-0.536043\pi\)
−0.112990 + 0.993596i \(0.536043\pi\)
\(192\) 0 0
\(193\) −7.75379 −0.558130 −0.279065 0.960272i \(-0.590024\pi\)
−0.279065 + 0.960272i \(0.590024\pi\)
\(194\) 5.80776 0.416973
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) −21.5616 −1.52846 −0.764229 0.644945i \(-0.776880\pi\)
−0.764229 + 0.644945i \(0.776880\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) −0.246211 −0.0173234
\(203\) −1.00000 −0.0701862
\(204\) 0 0
\(205\) −2.24621 −0.156882
\(206\) −14.9309 −1.04028
\(207\) 0 0
\(208\) 3.56155 0.246949
\(209\) 7.31534 0.506013
\(210\) 0 0
\(211\) −11.1231 −0.765746 −0.382873 0.923801i \(-0.625065\pi\)
−0.382873 + 0.923801i \(0.625065\pi\)
\(212\) −6.68466 −0.459104
\(213\) 0 0
\(214\) 9.36932 0.640473
\(215\) 6.24621 0.425988
\(216\) 0 0
\(217\) 6.24621 0.424020
\(218\) 13.1231 0.888809
\(219\) 0 0
\(220\) 3.12311 0.210560
\(221\) −7.12311 −0.479152
\(222\) 0 0
\(223\) −18.0540 −1.20898 −0.604492 0.796611i \(-0.706624\pi\)
−0.604492 + 0.796611i \(0.706624\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 5.80776 0.386327
\(227\) 8.49242 0.563662 0.281831 0.959464i \(-0.409058\pi\)
0.281831 + 0.959464i \(0.409058\pi\)
\(228\) 0 0
\(229\) −26.4924 −1.75067 −0.875334 0.483518i \(-0.839359\pi\)
−0.875334 + 0.483518i \(0.839359\pi\)
\(230\) 9.36932 0.617794
\(231\) 0 0
\(232\) 1.00000 0.0656532
\(233\) 15.3693 1.00688 0.503439 0.864031i \(-0.332068\pi\)
0.503439 + 0.864031i \(0.332068\pi\)
\(234\) 0 0
\(235\) 17.3693 1.13305
\(236\) −4.68466 −0.304945
\(237\) 0 0
\(238\) 2.00000 0.129641
\(239\) 22.0540 1.42655 0.713277 0.700883i \(-0.247210\pi\)
0.713277 + 0.700883i \(0.247210\pi\)
\(240\) 0 0
\(241\) −7.75379 −0.499465 −0.249733 0.968315i \(-0.580343\pi\)
−0.249733 + 0.968315i \(0.580343\pi\)
\(242\) 8.56155 0.550357
\(243\) 0 0
\(244\) 6.87689 0.440248
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) −16.6847 −1.06162
\(248\) −6.24621 −0.396635
\(249\) 0 0
\(250\) −12.0000 −0.758947
\(251\) 16.8769 1.06526 0.532630 0.846348i \(-0.321204\pi\)
0.532630 + 0.846348i \(0.321204\pi\)
\(252\) 0 0
\(253\) −7.31534 −0.459912
\(254\) 12.6847 0.795906
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −10.4924 −0.654499 −0.327250 0.944938i \(-0.606122\pi\)
−0.327250 + 0.944938i \(0.606122\pi\)
\(258\) 0 0
\(259\) 3.56155 0.221304
\(260\) −7.12311 −0.441756
\(261\) 0 0
\(262\) 15.1231 0.934309
\(263\) −1.75379 −0.108143 −0.0540716 0.998537i \(-0.517220\pi\)
−0.0540716 + 0.998537i \(0.517220\pi\)
\(264\) 0 0
\(265\) 13.3693 0.821271
\(266\) 4.68466 0.287235
\(267\) 0 0
\(268\) −9.56155 −0.584065
\(269\) −11.5616 −0.704920 −0.352460 0.935827i \(-0.614655\pi\)
−0.352460 + 0.935827i \(0.614655\pi\)
\(270\) 0 0
\(271\) 14.2462 0.865396 0.432698 0.901539i \(-0.357562\pi\)
0.432698 + 0.901539i \(0.357562\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) −3.56155 −0.215161
\(275\) 1.56155 0.0941652
\(276\) 0 0
\(277\) −17.6155 −1.05841 −0.529207 0.848493i \(-0.677511\pi\)
−0.529207 + 0.848493i \(0.677511\pi\)
\(278\) 12.0000 0.719712
\(279\) 0 0
\(280\) 2.00000 0.119523
\(281\) 9.12311 0.544239 0.272119 0.962263i \(-0.412275\pi\)
0.272119 + 0.962263i \(0.412275\pi\)
\(282\) 0 0
\(283\) −30.7386 −1.82722 −0.913611 0.406589i \(-0.866718\pi\)
−0.913611 + 0.406589i \(0.866718\pi\)
\(284\) 10.2462 0.608001
\(285\) 0 0
\(286\) 5.56155 0.328862
\(287\) 1.12311 0.0662948
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) −2.00000 −0.117444
\(291\) 0 0
\(292\) −2.68466 −0.157108
\(293\) −24.0540 −1.40525 −0.702624 0.711561i \(-0.747988\pi\)
−0.702624 + 0.711561i \(0.747988\pi\)
\(294\) 0 0
\(295\) 9.36932 0.545503
\(296\) −3.56155 −0.207011
\(297\) 0 0
\(298\) 0.438447 0.0253986
\(299\) 16.6847 0.964899
\(300\) 0 0
\(301\) −3.12311 −0.180013
\(302\) −1.36932 −0.0787953
\(303\) 0 0
\(304\) −4.68466 −0.268684
\(305\) −13.7538 −0.787540
\(306\) 0 0
\(307\) −1.56155 −0.0891225 −0.0445613 0.999007i \(-0.514189\pi\)
−0.0445613 + 0.999007i \(0.514189\pi\)
\(308\) −1.56155 −0.0889777
\(309\) 0 0
\(310\) 12.4924 0.709522
\(311\) −12.4924 −0.708380 −0.354190 0.935173i \(-0.615243\pi\)
−0.354190 + 0.935173i \(0.615243\pi\)
\(312\) 0 0
\(313\) 2.00000 0.113047 0.0565233 0.998401i \(-0.481998\pi\)
0.0565233 + 0.998401i \(0.481998\pi\)
\(314\) −8.24621 −0.465361
\(315\) 0 0
\(316\) 2.24621 0.126359
\(317\) −14.0000 −0.786318 −0.393159 0.919470i \(-0.628618\pi\)
−0.393159 + 0.919470i \(0.628618\pi\)
\(318\) 0 0
\(319\) 1.56155 0.0874302
\(320\) −2.00000 −0.111803
\(321\) 0 0
\(322\) −4.68466 −0.261066
\(323\) 9.36932 0.521323
\(324\) 0 0
\(325\) −3.56155 −0.197559
\(326\) 19.1231 1.05913
\(327\) 0 0
\(328\) −1.12311 −0.0620131
\(329\) −8.68466 −0.478801
\(330\) 0 0
\(331\) 1.36932 0.0752645 0.0376322 0.999292i \(-0.488018\pi\)
0.0376322 + 0.999292i \(0.488018\pi\)
\(332\) 15.8078 0.867564
\(333\) 0 0
\(334\) −1.75379 −0.0959631
\(335\) 19.1231 1.04481
\(336\) 0 0
\(337\) −7.36932 −0.401432 −0.200716 0.979649i \(-0.564327\pi\)
−0.200716 + 0.979649i \(0.564327\pi\)
\(338\) 0.315342 0.0171523
\(339\) 0 0
\(340\) 4.00000 0.216930
\(341\) −9.75379 −0.528197
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 3.12311 0.168387
\(345\) 0 0
\(346\) 10.0000 0.537603
\(347\) −35.1231 −1.88551 −0.942754 0.333490i \(-0.891774\pi\)
−0.942754 + 0.333490i \(0.891774\pi\)
\(348\) 0 0
\(349\) 34.4924 1.84634 0.923169 0.384395i \(-0.125590\pi\)
0.923169 + 0.384395i \(0.125590\pi\)
\(350\) 1.00000 0.0534522
\(351\) 0 0
\(352\) 1.56155 0.0832310
\(353\) −10.4924 −0.558455 −0.279228 0.960225i \(-0.590078\pi\)
−0.279228 + 0.960225i \(0.590078\pi\)
\(354\) 0 0
\(355\) −20.4924 −1.08762
\(356\) −6.87689 −0.364475
\(357\) 0 0
\(358\) −3.12311 −0.165061
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 2.94602 0.155054
\(362\) −10.4924 −0.551469
\(363\) 0 0
\(364\) 3.56155 0.186676
\(365\) 5.36932 0.281043
\(366\) 0 0
\(367\) 14.2462 0.743646 0.371823 0.928304i \(-0.378733\pi\)
0.371823 + 0.928304i \(0.378733\pi\)
\(368\) 4.68466 0.244205
\(369\) 0 0
\(370\) 7.12311 0.370313
\(371\) −6.68466 −0.347050
\(372\) 0 0
\(373\) 2.49242 0.129053 0.0645264 0.997916i \(-0.479446\pi\)
0.0645264 + 0.997916i \(0.479446\pi\)
\(374\) −3.12311 −0.161492
\(375\) 0 0
\(376\) 8.68466 0.447877
\(377\) −3.56155 −0.183429
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 9.36932 0.480636
\(381\) 0 0
\(382\) 3.12311 0.159792
\(383\) 4.49242 0.229552 0.114776 0.993391i \(-0.463385\pi\)
0.114776 + 0.993391i \(0.463385\pi\)
\(384\) 0 0
\(385\) 3.12311 0.159168
\(386\) 7.75379 0.394657
\(387\) 0 0
\(388\) −5.80776 −0.294845
\(389\) −23.3693 −1.18487 −0.592436 0.805618i \(-0.701834\pi\)
−0.592436 + 0.805618i \(0.701834\pi\)
\(390\) 0 0
\(391\) −9.36932 −0.473827
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) −2.00000 −0.100759
\(395\) −4.49242 −0.226038
\(396\) 0 0
\(397\) 28.9309 1.45200 0.725999 0.687695i \(-0.241378\pi\)
0.725999 + 0.687695i \(0.241378\pi\)
\(398\) 21.5616 1.08078
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) 2.49242 0.124466 0.0622328 0.998062i \(-0.480178\pi\)
0.0622328 + 0.998062i \(0.480178\pi\)
\(402\) 0 0
\(403\) 22.2462 1.10816
\(404\) 0.246211 0.0122495
\(405\) 0 0
\(406\) 1.00000 0.0496292
\(407\) −5.56155 −0.275676
\(408\) 0 0
\(409\) −22.4924 −1.11218 −0.556089 0.831123i \(-0.687699\pi\)
−0.556089 + 0.831123i \(0.687699\pi\)
\(410\) 2.24621 0.110932
\(411\) 0 0
\(412\) 14.9309 0.735591
\(413\) −4.68466 −0.230517
\(414\) 0 0
\(415\) −31.6155 −1.55195
\(416\) −3.56155 −0.174619
\(417\) 0 0
\(418\) −7.31534 −0.357805
\(419\) 4.00000 0.195413 0.0977064 0.995215i \(-0.468849\pi\)
0.0977064 + 0.995215i \(0.468849\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 11.1231 0.541464
\(423\) 0 0
\(424\) 6.68466 0.324636
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) 6.87689 0.332796
\(428\) −9.36932 −0.452883
\(429\) 0 0
\(430\) −6.24621 −0.301219
\(431\) −15.8078 −0.761433 −0.380717 0.924692i \(-0.624323\pi\)
−0.380717 + 0.924692i \(0.624323\pi\)
\(432\) 0 0
\(433\) −8.24621 −0.396288 −0.198144 0.980173i \(-0.563491\pi\)
−0.198144 + 0.980173i \(0.563491\pi\)
\(434\) −6.24621 −0.299828
\(435\) 0 0
\(436\) −13.1231 −0.628483
\(437\) −21.9460 −1.04982
\(438\) 0 0
\(439\) 7.31534 0.349142 0.174571 0.984645i \(-0.444146\pi\)
0.174571 + 0.984645i \(0.444146\pi\)
\(440\) −3.12311 −0.148888
\(441\) 0 0
\(442\) 7.12311 0.338812
\(443\) −10.9309 −0.519341 −0.259671 0.965697i \(-0.583614\pi\)
−0.259671 + 0.965697i \(0.583614\pi\)
\(444\) 0 0
\(445\) 13.7538 0.651992
\(446\) 18.0540 0.854881
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) −23.1771 −1.09379 −0.546897 0.837200i \(-0.684191\pi\)
−0.546897 + 0.837200i \(0.684191\pi\)
\(450\) 0 0
\(451\) −1.75379 −0.0825827
\(452\) −5.80776 −0.273174
\(453\) 0 0
\(454\) −8.49242 −0.398569
\(455\) −7.12311 −0.333936
\(456\) 0 0
\(457\) 15.1771 0.709954 0.354977 0.934875i \(-0.384489\pi\)
0.354977 + 0.934875i \(0.384489\pi\)
\(458\) 26.4924 1.23791
\(459\) 0 0
\(460\) −9.36932 −0.436847
\(461\) 32.5464 1.51584 0.757918 0.652349i \(-0.226216\pi\)
0.757918 + 0.652349i \(0.226216\pi\)
\(462\) 0 0
\(463\) 32.9848 1.53294 0.766468 0.642283i \(-0.222012\pi\)
0.766468 + 0.642283i \(0.222012\pi\)
\(464\) −1.00000 −0.0464238
\(465\) 0 0
\(466\) −15.3693 −0.711970
\(467\) −42.2462 −1.95492 −0.977461 0.211117i \(-0.932290\pi\)
−0.977461 + 0.211117i \(0.932290\pi\)
\(468\) 0 0
\(469\) −9.56155 −0.441511
\(470\) −17.3693 −0.801187
\(471\) 0 0
\(472\) 4.68466 0.215629
\(473\) 4.87689 0.224240
\(474\) 0 0
\(475\) 4.68466 0.214947
\(476\) −2.00000 −0.0916698
\(477\) 0 0
\(478\) −22.0540 −1.00873
\(479\) −19.8078 −0.905040 −0.452520 0.891754i \(-0.649475\pi\)
−0.452520 + 0.891754i \(0.649475\pi\)
\(480\) 0 0
\(481\) 12.6847 0.578371
\(482\) 7.75379 0.353175
\(483\) 0 0
\(484\) −8.56155 −0.389161
\(485\) 11.6155 0.527434
\(486\) 0 0
\(487\) −6.24621 −0.283043 −0.141521 0.989935i \(-0.545199\pi\)
−0.141521 + 0.989935i \(0.545199\pi\)
\(488\) −6.87689 −0.311302
\(489\) 0 0
\(490\) 2.00000 0.0903508
\(491\) −23.8078 −1.07443 −0.537215 0.843446i \(-0.680524\pi\)
−0.537215 + 0.843446i \(0.680524\pi\)
\(492\) 0 0
\(493\) 2.00000 0.0900755
\(494\) 16.6847 0.750678
\(495\) 0 0
\(496\) 6.24621 0.280463
\(497\) 10.2462 0.459605
\(498\) 0 0
\(499\) −42.9309 −1.92185 −0.960925 0.276809i \(-0.910723\pi\)
−0.960925 + 0.276809i \(0.910723\pi\)
\(500\) 12.0000 0.536656
\(501\) 0 0
\(502\) −16.8769 −0.753253
\(503\) 30.9309 1.37914 0.689570 0.724219i \(-0.257800\pi\)
0.689570 + 0.724219i \(0.257800\pi\)
\(504\) 0 0
\(505\) −0.492423 −0.0219125
\(506\) 7.31534 0.325207
\(507\) 0 0
\(508\) −12.6847 −0.562791
\(509\) 15.7538 0.698274 0.349137 0.937072i \(-0.386475\pi\)
0.349137 + 0.937072i \(0.386475\pi\)
\(510\) 0 0
\(511\) −2.68466 −0.118762
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 10.4924 0.462801
\(515\) −29.8617 −1.31587
\(516\) 0 0
\(517\) 13.5616 0.596436
\(518\) −3.56155 −0.156486
\(519\) 0 0
\(520\) 7.12311 0.312369
\(521\) 2.68466 0.117617 0.0588085 0.998269i \(-0.481270\pi\)
0.0588085 + 0.998269i \(0.481270\pi\)
\(522\) 0 0
\(523\) 0.876894 0.0383439 0.0191720 0.999816i \(-0.493897\pi\)
0.0191720 + 0.999816i \(0.493897\pi\)
\(524\) −15.1231 −0.660656
\(525\) 0 0
\(526\) 1.75379 0.0764688
\(527\) −12.4924 −0.544178
\(528\) 0 0
\(529\) −1.05398 −0.0458250
\(530\) −13.3693 −0.580726
\(531\) 0 0
\(532\) −4.68466 −0.203106
\(533\) 4.00000 0.173259
\(534\) 0 0
\(535\) 18.7386 0.810142
\(536\) 9.56155 0.412996
\(537\) 0 0
\(538\) 11.5616 0.498454
\(539\) −1.56155 −0.0672608
\(540\) 0 0
\(541\) −33.3153 −1.43234 −0.716169 0.697927i \(-0.754106\pi\)
−0.716169 + 0.697927i \(0.754106\pi\)
\(542\) −14.2462 −0.611927
\(543\) 0 0
\(544\) 2.00000 0.0857493
\(545\) 26.2462 1.12426
\(546\) 0 0
\(547\) 11.3153 0.483809 0.241905 0.970300i \(-0.422228\pi\)
0.241905 + 0.970300i \(0.422228\pi\)
\(548\) 3.56155 0.152142
\(549\) 0 0
\(550\) −1.56155 −0.0665848
\(551\) 4.68466 0.199573
\(552\) 0 0
\(553\) 2.24621 0.0955186
\(554\) 17.6155 0.748412
\(555\) 0 0
\(556\) −12.0000 −0.508913
\(557\) −19.5616 −0.828850 −0.414425 0.910084i \(-0.636017\pi\)
−0.414425 + 0.910084i \(0.636017\pi\)
\(558\) 0 0
\(559\) −11.1231 −0.470457
\(560\) −2.00000 −0.0845154
\(561\) 0 0
\(562\) −9.12311 −0.384835
\(563\) 29.3693 1.23777 0.618885 0.785482i \(-0.287585\pi\)
0.618885 + 0.785482i \(0.287585\pi\)
\(564\) 0 0
\(565\) 11.6155 0.488669
\(566\) 30.7386 1.29204
\(567\) 0 0
\(568\) −10.2462 −0.429921
\(569\) 25.8078 1.08192 0.540959 0.841049i \(-0.318061\pi\)
0.540959 + 0.841049i \(0.318061\pi\)
\(570\) 0 0
\(571\) 17.5616 0.734928 0.367464 0.930038i \(-0.380226\pi\)
0.367464 + 0.930038i \(0.380226\pi\)
\(572\) −5.56155 −0.232540
\(573\) 0 0
\(574\) −1.12311 −0.0468775
\(575\) −4.68466 −0.195364
\(576\) 0 0
\(577\) 11.1771 0.465308 0.232654 0.972560i \(-0.425259\pi\)
0.232654 + 0.972560i \(0.425259\pi\)
\(578\) 13.0000 0.540729
\(579\) 0 0
\(580\) 2.00000 0.0830455
\(581\) 15.8078 0.655817
\(582\) 0 0
\(583\) 10.4384 0.432316
\(584\) 2.68466 0.111092
\(585\) 0 0
\(586\) 24.0540 0.993661
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) −29.2614 −1.20569
\(590\) −9.36932 −0.385729
\(591\) 0 0
\(592\) 3.56155 0.146379
\(593\) −0.438447 −0.0180049 −0.00900243 0.999959i \(-0.502866\pi\)
−0.00900243 + 0.999959i \(0.502866\pi\)
\(594\) 0 0
\(595\) 4.00000 0.163984
\(596\) −0.438447 −0.0179595
\(597\) 0 0
\(598\) −16.6847 −0.682286
\(599\) 34.7386 1.41938 0.709691 0.704513i \(-0.248835\pi\)
0.709691 + 0.704513i \(0.248835\pi\)
\(600\) 0 0
\(601\) −9.31534 −0.379981 −0.189990 0.981786i \(-0.560846\pi\)
−0.189990 + 0.981786i \(0.560846\pi\)
\(602\) 3.12311 0.127288
\(603\) 0 0
\(604\) 1.36932 0.0557167
\(605\) 17.1231 0.696153
\(606\) 0 0
\(607\) 23.6155 0.958525 0.479262 0.877672i \(-0.340904\pi\)
0.479262 + 0.877672i \(0.340904\pi\)
\(608\) 4.68466 0.189988
\(609\) 0 0
\(610\) 13.7538 0.556875
\(611\) −30.9309 −1.25133
\(612\) 0 0
\(613\) 45.6155 1.84239 0.921197 0.389097i \(-0.127213\pi\)
0.921197 + 0.389097i \(0.127213\pi\)
\(614\) 1.56155 0.0630191
\(615\) 0 0
\(616\) 1.56155 0.0629168
\(617\) −19.7538 −0.795258 −0.397629 0.917546i \(-0.630167\pi\)
−0.397629 + 0.917546i \(0.630167\pi\)
\(618\) 0 0
\(619\) 19.3153 0.776349 0.388175 0.921586i \(-0.373106\pi\)
0.388175 + 0.921586i \(0.373106\pi\)
\(620\) −12.4924 −0.501708
\(621\) 0 0
\(622\) 12.4924 0.500901
\(623\) −6.87689 −0.275517
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) −2.00000 −0.0799361
\(627\) 0 0
\(628\) 8.24621 0.329060
\(629\) −7.12311 −0.284017
\(630\) 0 0
\(631\) −32.9848 −1.31311 −0.656553 0.754280i \(-0.727986\pi\)
−0.656553 + 0.754280i \(0.727986\pi\)
\(632\) −2.24621 −0.0893495
\(633\) 0 0
\(634\) 14.0000 0.556011
\(635\) 25.3693 1.00675
\(636\) 0 0
\(637\) 3.56155 0.141114
\(638\) −1.56155 −0.0618225
\(639\) 0 0
\(640\) 2.00000 0.0790569
\(641\) 32.7386 1.29310 0.646549 0.762872i \(-0.276212\pi\)
0.646549 + 0.762872i \(0.276212\pi\)
\(642\) 0 0
\(643\) −0.492423 −0.0194192 −0.00970962 0.999953i \(-0.503091\pi\)
−0.00970962 + 0.999953i \(0.503091\pi\)
\(644\) 4.68466 0.184601
\(645\) 0 0
\(646\) −9.36932 −0.368631
\(647\) 17.3693 0.682858 0.341429 0.939908i \(-0.389089\pi\)
0.341429 + 0.939908i \(0.389089\pi\)
\(648\) 0 0
\(649\) 7.31534 0.287152
\(650\) 3.56155 0.139696
\(651\) 0 0
\(652\) −19.1231 −0.748919
\(653\) −43.8617 −1.71644 −0.858221 0.513280i \(-0.828430\pi\)
−0.858221 + 0.513280i \(0.828430\pi\)
\(654\) 0 0
\(655\) 30.2462 1.18182
\(656\) 1.12311 0.0438499
\(657\) 0 0
\(658\) 8.68466 0.338563
\(659\) −5.75379 −0.224136 −0.112068 0.993701i \(-0.535747\pi\)
−0.112068 + 0.993701i \(0.535747\pi\)
\(660\) 0 0
\(661\) −25.3153 −0.984653 −0.492326 0.870411i \(-0.663853\pi\)
−0.492326 + 0.870411i \(0.663853\pi\)
\(662\) −1.36932 −0.0532200
\(663\) 0 0
\(664\) −15.8078 −0.613460
\(665\) 9.36932 0.363327
\(666\) 0 0
\(667\) −4.68466 −0.181391
\(668\) 1.75379 0.0678561
\(669\) 0 0
\(670\) −19.1231 −0.738790
\(671\) −10.7386 −0.414560
\(672\) 0 0
\(673\) −12.9309 −0.498448 −0.249224 0.968446i \(-0.580176\pi\)
−0.249224 + 0.968446i \(0.580176\pi\)
\(674\) 7.36932 0.283855
\(675\) 0 0
\(676\) −0.315342 −0.0121285
\(677\) 8.93087 0.343241 0.171621 0.985163i \(-0.445100\pi\)
0.171621 + 0.985163i \(0.445100\pi\)
\(678\) 0 0
\(679\) −5.80776 −0.222882
\(680\) −4.00000 −0.153393
\(681\) 0 0
\(682\) 9.75379 0.373492
\(683\) 28.8769 1.10494 0.552472 0.833532i \(-0.313685\pi\)
0.552472 + 0.833532i \(0.313685\pi\)
\(684\) 0 0
\(685\) −7.12311 −0.272160
\(686\) −1.00000 −0.0381802
\(687\) 0 0
\(688\) −3.12311 −0.119067
\(689\) −23.8078 −0.907004
\(690\) 0 0
\(691\) 13.7538 0.523219 0.261609 0.965174i \(-0.415747\pi\)
0.261609 + 0.965174i \(0.415747\pi\)
\(692\) −10.0000 −0.380143
\(693\) 0 0
\(694\) 35.1231 1.33325
\(695\) 24.0000 0.910372
\(696\) 0 0
\(697\) −2.24621 −0.0850813
\(698\) −34.4924 −1.30556
\(699\) 0 0
\(700\) −1.00000 −0.0377964
\(701\) −14.0000 −0.528773 −0.264386 0.964417i \(-0.585169\pi\)
−0.264386 + 0.964417i \(0.585169\pi\)
\(702\) 0 0
\(703\) −16.6847 −0.629274
\(704\) −1.56155 −0.0588532
\(705\) 0 0
\(706\) 10.4924 0.394888
\(707\) 0.246211 0.00925973
\(708\) 0 0
\(709\) 3.26137 0.122483 0.0612416 0.998123i \(-0.480494\pi\)
0.0612416 + 0.998123i \(0.480494\pi\)
\(710\) 20.4924 0.769067
\(711\) 0 0
\(712\) 6.87689 0.257723
\(713\) 29.2614 1.09585
\(714\) 0 0
\(715\) 11.1231 0.415981
\(716\) 3.12311 0.116716
\(717\) 0 0
\(718\) 0 0
\(719\) −32.9848 −1.23013 −0.615064 0.788478i \(-0.710870\pi\)
−0.615064 + 0.788478i \(0.710870\pi\)
\(720\) 0 0
\(721\) 14.9309 0.556055
\(722\) −2.94602 −0.109640
\(723\) 0 0
\(724\) 10.4924 0.389948
\(725\) 1.00000 0.0371391
\(726\) 0 0
\(727\) 27.1231 1.00594 0.502970 0.864304i \(-0.332241\pi\)
0.502970 + 0.864304i \(0.332241\pi\)
\(728\) −3.56155 −0.132000
\(729\) 0 0
\(730\) −5.36932 −0.198727
\(731\) 6.24621 0.231024
\(732\) 0 0
\(733\) −19.8617 −0.733610 −0.366805 0.930298i \(-0.619548\pi\)
−0.366805 + 0.930298i \(0.619548\pi\)
\(734\) −14.2462 −0.525837
\(735\) 0 0
\(736\) −4.68466 −0.172679
\(737\) 14.9309 0.549986
\(738\) 0 0
\(739\) 14.2462 0.524055 0.262028 0.965060i \(-0.415609\pi\)
0.262028 + 0.965060i \(0.415609\pi\)
\(740\) −7.12311 −0.261851
\(741\) 0 0
\(742\) 6.68466 0.245402
\(743\) 28.4924 1.04529 0.522643 0.852552i \(-0.324946\pi\)
0.522643 + 0.852552i \(0.324946\pi\)
\(744\) 0 0
\(745\) 0.876894 0.0321269
\(746\) −2.49242 −0.0912541
\(747\) 0 0
\(748\) 3.12311 0.114192
\(749\) −9.36932 −0.342347
\(750\) 0 0
\(751\) −33.1771 −1.21065 −0.605324 0.795979i \(-0.706957\pi\)
−0.605324 + 0.795979i \(0.706957\pi\)
\(752\) −8.68466 −0.316697
\(753\) 0 0
\(754\) 3.56155 0.129704
\(755\) −2.73863 −0.0996691
\(756\) 0 0
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 8.00000 0.290573
\(759\) 0 0
\(760\) −9.36932 −0.339861
\(761\) −0.0539753 −0.00195660 −0.000978302 1.00000i \(-0.500311\pi\)
−0.000978302 1.00000i \(0.500311\pi\)
\(762\) 0 0
\(763\) −13.1231 −0.475088
\(764\) −3.12311 −0.112990
\(765\) 0 0
\(766\) −4.49242 −0.162318
\(767\) −16.6847 −0.602448
\(768\) 0 0
\(769\) 12.2462 0.441610 0.220805 0.975318i \(-0.429132\pi\)
0.220805 + 0.975318i \(0.429132\pi\)
\(770\) −3.12311 −0.112549
\(771\) 0 0
\(772\) −7.75379 −0.279065
\(773\) −14.0000 −0.503545 −0.251773 0.967786i \(-0.581013\pi\)
−0.251773 + 0.967786i \(0.581013\pi\)
\(774\) 0 0
\(775\) −6.24621 −0.224371
\(776\) 5.80776 0.208487
\(777\) 0 0
\(778\) 23.3693 0.837831
\(779\) −5.26137 −0.188508
\(780\) 0 0
\(781\) −16.0000 −0.572525
\(782\) 9.36932 0.335046
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) −16.4924 −0.588640
\(786\) 0 0
\(787\) 53.3693 1.90241 0.951205 0.308559i \(-0.0998466\pi\)
0.951205 + 0.308559i \(0.0998466\pi\)
\(788\) 2.00000 0.0712470
\(789\) 0 0
\(790\) 4.49242 0.159833
\(791\) −5.80776 −0.206500
\(792\) 0 0
\(793\) 24.4924 0.869751
\(794\) −28.9309 −1.02672
\(795\) 0 0
\(796\) −21.5616 −0.764229
\(797\) 14.4924 0.513348 0.256674 0.966498i \(-0.417373\pi\)
0.256674 + 0.966498i \(0.417373\pi\)
\(798\) 0 0
\(799\) 17.3693 0.614482
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) −2.49242 −0.0880105
\(803\) 4.19224 0.147941
\(804\) 0 0
\(805\) −9.36932 −0.330225
\(806\) −22.2462 −0.783589
\(807\) 0 0
\(808\) −0.246211 −0.00866168
\(809\) −41.2311 −1.44961 −0.724803 0.688956i \(-0.758069\pi\)
−0.724803 + 0.688956i \(0.758069\pi\)
\(810\) 0 0
\(811\) 29.3693 1.03130 0.515648 0.856800i \(-0.327551\pi\)
0.515648 + 0.856800i \(0.327551\pi\)
\(812\) −1.00000 −0.0350931
\(813\) 0 0
\(814\) 5.56155 0.194932
\(815\) 38.2462 1.33971
\(816\) 0 0
\(817\) 14.6307 0.511863
\(818\) 22.4924 0.786429
\(819\) 0 0
\(820\) −2.24621 −0.0784411
\(821\) −36.5464 −1.27548 −0.637739 0.770253i \(-0.720130\pi\)
−0.637739 + 0.770253i \(0.720130\pi\)
\(822\) 0 0
\(823\) 8.19224 0.285563 0.142782 0.989754i \(-0.454395\pi\)
0.142782 + 0.989754i \(0.454395\pi\)
\(824\) −14.9309 −0.520141
\(825\) 0 0
\(826\) 4.68466 0.163000
\(827\) −5.06913 −0.176271 −0.0881355 0.996108i \(-0.528091\pi\)
−0.0881355 + 0.996108i \(0.528091\pi\)
\(828\) 0 0
\(829\) −6.00000 −0.208389 −0.104194 0.994557i \(-0.533226\pi\)
−0.104194 + 0.994557i \(0.533226\pi\)
\(830\) 31.6155 1.09739
\(831\) 0 0
\(832\) 3.56155 0.123475
\(833\) −2.00000 −0.0692959
\(834\) 0 0
\(835\) −3.50758 −0.121385
\(836\) 7.31534 0.253006
\(837\) 0 0
\(838\) −4.00000 −0.138178
\(839\) 48.0000 1.65714 0.828572 0.559883i \(-0.189154\pi\)
0.828572 + 0.559883i \(0.189154\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 2.00000 0.0689246
\(843\) 0 0
\(844\) −11.1231 −0.382873
\(845\) 0.630683 0.0216962
\(846\) 0 0
\(847\) −8.56155 −0.294178
\(848\) −6.68466 −0.229552
\(849\) 0 0
\(850\) −2.00000 −0.0685994
\(851\) 16.6847 0.571943
\(852\) 0 0
\(853\) −11.8617 −0.406138 −0.203069 0.979164i \(-0.565092\pi\)
−0.203069 + 0.979164i \(0.565092\pi\)
\(854\) −6.87689 −0.235322
\(855\) 0 0
\(856\) 9.36932 0.320237
\(857\) 43.6695 1.49172 0.745861 0.666102i \(-0.232038\pi\)
0.745861 + 0.666102i \(0.232038\pi\)
\(858\) 0 0
\(859\) 15.4233 0.526236 0.263118 0.964764i \(-0.415249\pi\)
0.263118 + 0.964764i \(0.415249\pi\)
\(860\) 6.24621 0.212994
\(861\) 0 0
\(862\) 15.8078 0.538415
\(863\) −6.82292 −0.232255 −0.116127 0.993234i \(-0.537048\pi\)
−0.116127 + 0.993234i \(0.537048\pi\)
\(864\) 0 0
\(865\) 20.0000 0.680020
\(866\) 8.24621 0.280218
\(867\) 0 0
\(868\) 6.24621 0.212010
\(869\) −3.50758 −0.118986
\(870\) 0 0
\(871\) −34.0540 −1.15387
\(872\) 13.1231 0.444404
\(873\) 0 0
\(874\) 21.9460 0.742335
\(875\) 12.0000 0.405674
\(876\) 0 0
\(877\) 31.3693 1.05927 0.529633 0.848227i \(-0.322330\pi\)
0.529633 + 0.848227i \(0.322330\pi\)
\(878\) −7.31534 −0.246881
\(879\) 0 0
\(880\) 3.12311 0.105280
\(881\) −21.1231 −0.711656 −0.355828 0.934552i \(-0.615801\pi\)
−0.355828 + 0.934552i \(0.615801\pi\)
\(882\) 0 0
\(883\) 42.9309 1.44474 0.722369 0.691507i \(-0.243053\pi\)
0.722369 + 0.691507i \(0.243053\pi\)
\(884\) −7.12311 −0.239576
\(885\) 0 0
\(886\) 10.9309 0.367230
\(887\) 27.4233 0.920784 0.460392 0.887716i \(-0.347709\pi\)
0.460392 + 0.887716i \(0.347709\pi\)
\(888\) 0 0
\(889\) −12.6847 −0.425430
\(890\) −13.7538 −0.461028
\(891\) 0 0
\(892\) −18.0540 −0.604492
\(893\) 40.6847 1.36146
\(894\) 0 0
\(895\) −6.24621 −0.208788
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 23.1771 0.773429
\(899\) −6.24621 −0.208323
\(900\) 0 0
\(901\) 13.3693 0.445397
\(902\) 1.75379 0.0583948
\(903\) 0 0
\(904\) 5.80776 0.193163
\(905\) −20.9848 −0.697560
\(906\) 0 0
\(907\) 52.1080 1.73022 0.865108 0.501586i \(-0.167250\pi\)
0.865108 + 0.501586i \(0.167250\pi\)
\(908\) 8.49242 0.281831
\(909\) 0 0
\(910\) 7.12311 0.236129
\(911\) −47.2311 −1.56483 −0.782417 0.622754i \(-0.786014\pi\)
−0.782417 + 0.622754i \(0.786014\pi\)
\(912\) 0 0
\(913\) −24.6847 −0.816943
\(914\) −15.1771 −0.502013
\(915\) 0 0
\(916\) −26.4924 −0.875334
\(917\) −15.1231 −0.499409
\(918\) 0 0
\(919\) −33.3693 −1.10075 −0.550376 0.834917i \(-0.685516\pi\)
−0.550376 + 0.834917i \(0.685516\pi\)
\(920\) 9.36932 0.308897
\(921\) 0 0
\(922\) −32.5464 −1.07186
\(923\) 36.4924 1.20116
\(924\) 0 0
\(925\) −3.56155 −0.117103
\(926\) −32.9848 −1.08395
\(927\) 0 0
\(928\) 1.00000 0.0328266
\(929\) 40.2462 1.32044 0.660218 0.751074i \(-0.270464\pi\)
0.660218 + 0.751074i \(0.270464\pi\)
\(930\) 0 0
\(931\) −4.68466 −0.153533
\(932\) 15.3693 0.503439
\(933\) 0 0
\(934\) 42.2462 1.38234
\(935\) −6.24621 −0.204273
\(936\) 0 0
\(937\) −53.2311 −1.73898 −0.869491 0.493948i \(-0.835553\pi\)
−0.869491 + 0.493948i \(0.835553\pi\)
\(938\) 9.56155 0.312196
\(939\) 0 0
\(940\) 17.3693 0.566525
\(941\) 18.4924 0.602836 0.301418 0.953492i \(-0.402540\pi\)
0.301418 + 0.953492i \(0.402540\pi\)
\(942\) 0 0
\(943\) 5.26137 0.171334
\(944\) −4.68466 −0.152473
\(945\) 0 0
\(946\) −4.87689 −0.158562
\(947\) 2.24621 0.0729921 0.0364960 0.999334i \(-0.488380\pi\)
0.0364960 + 0.999334i \(0.488380\pi\)
\(948\) 0 0
\(949\) −9.56155 −0.310381
\(950\) −4.68466 −0.151990
\(951\) 0 0
\(952\) 2.00000 0.0648204
\(953\) −10.0000 −0.323932 −0.161966 0.986796i \(-0.551783\pi\)
−0.161966 + 0.986796i \(0.551783\pi\)
\(954\) 0 0
\(955\) 6.24621 0.202123
\(956\) 22.0540 0.713277
\(957\) 0 0
\(958\) 19.8078 0.639960
\(959\) 3.56155 0.115009
\(960\) 0 0
\(961\) 8.01515 0.258553
\(962\) −12.6847 −0.408970
\(963\) 0 0
\(964\) −7.75379 −0.249733
\(965\) 15.5076 0.499207
\(966\) 0 0
\(967\) 52.3002 1.68186 0.840930 0.541143i \(-0.182008\pi\)
0.840930 + 0.541143i \(0.182008\pi\)
\(968\) 8.56155 0.275179
\(969\) 0 0
\(970\) −11.6155 −0.372952
\(971\) −13.7538 −0.441380 −0.220690 0.975344i \(-0.570831\pi\)
−0.220690 + 0.975344i \(0.570831\pi\)
\(972\) 0 0
\(973\) −12.0000 −0.384702
\(974\) 6.24621 0.200142
\(975\) 0 0
\(976\) 6.87689 0.220124
\(977\) 40.7386 1.30334 0.651672 0.758501i \(-0.274068\pi\)
0.651672 + 0.758501i \(0.274068\pi\)
\(978\) 0 0
\(979\) 10.7386 0.343208
\(980\) −2.00000 −0.0638877
\(981\) 0 0
\(982\) 23.8078 0.759736
\(983\) 17.7538 0.566258 0.283129 0.959082i \(-0.408628\pi\)
0.283129 + 0.959082i \(0.408628\pi\)
\(984\) 0 0
\(985\) −4.00000 −0.127451
\(986\) −2.00000 −0.0636930
\(987\) 0 0
\(988\) −16.6847 −0.530810
\(989\) −14.6307 −0.465229
\(990\) 0 0
\(991\) 28.8769 0.917305 0.458652 0.888616i \(-0.348332\pi\)
0.458652 + 0.888616i \(0.348332\pi\)
\(992\) −6.24621 −0.198317
\(993\) 0 0
\(994\) −10.2462 −0.324990
\(995\) 43.1231 1.36709
\(996\) 0 0
\(997\) 54.4924 1.72579 0.862896 0.505381i \(-0.168648\pi\)
0.862896 + 0.505381i \(0.168648\pi\)
\(998\) 42.9309 1.35895
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3654.2.a.x.1.1 2
3.2 odd 2 1218.2.a.n.1.2 2
12.11 even 2 9744.2.a.be.1.1 2
21.20 even 2 8526.2.a.bi.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.a.n.1.2 2 3.2 odd 2
3654.2.a.x.1.1 2 1.1 even 1 trivial
8526.2.a.bi.1.2 2 21.20 even 2
9744.2.a.be.1.1 2 12.11 even 2