Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + x + 68 x^{2} + 53 x^{3} + 2809 x^{4}$ |
| Frobenius angles: | $\pm0.372328438702$, $\pm0.651829555365$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.2172124.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $144$ |
| Isomorphism classes: | 144 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2932$ | $8279968$ | $22157557936$ | $62275858359424$ | $174883698455168932$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $55$ | $2945$ | $148834$ | $7892529$ | $418186475$ | $22163854070$ | $1174712275295$ | $62259718483969$ | $3299763538727002$ | $174887469873803225$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):
- $y^2=45 x^6+20 x^5+6 x^4+13 x^3+35 x^2+37 x+52$
- $y^2=17 x^6+19 x^5+50 x^3+52 x^2+20 x+10$
- $y^2=5 x^6+17 x^5+50 x^4+32 x^3+45 x^2+20 x+32$
- $y^2=19 x^6+38 x^5+12 x^4+51 x^3+30 x+8$
- $y^2=35 x^6+35 x^5+35 x^4+5 x^3+25 x^2+29 x+48$
- $y^2=40 x^6+4 x^5+12 x^4+40 x^3+21 x^2+13 x+16$
- $y^2=51 x^6+10 x^5+40 x^4+32 x^3+50 x^2+9 x+28$
- $y^2=46 x^6+42 x^5+29 x^4+44 x^3+4 x^2+34 x+15$
- $y^2=23 x^6+5 x^5+51 x^4+21 x^3+27 x^2+3 x+32$
- $y^2=26 x^6+11 x^5+48 x^4+23 x^2+25 x+13$
- $y^2=17 x^6+41 x^5+22 x^4+48 x^3+9 x^2+26 x+35$
- $y^2=19 x^6+46 x^5+19 x^4+29 x^3+14 x^2+46 x+49$
- $y^2=2 x^6+12 x^5+2 x^4+16 x^3+45 x^2+23 x+8$
- $y^2=49 x^5+17 x^4+27 x^3+6 x^2+x+45$
- $y^2=33 x^6+15 x^5+6 x^4+31 x^3+11 x^2+3 x+21$
- $y^2=19 x^6+49 x^5+19 x^4+29 x^3+x^2+26 x+42$
- $y^2=39 x^6+48 x^5+7 x^4+13 x^3+52 x^2+12 x+25$
- $y^2=12 x^6+15 x^5+40 x^4+52 x^3+48 x^2+50 x+38$
- $y^2=36 x^6+33 x^5+23 x^4+12 x^3+17 x^2+46 x+15$
- $y^2=37 x^6+51 x^5+42 x^4+50 x^3+12 x^2+15 x+1$
- and 124 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is 4.0.2172124.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.ab_cq | $2$ | (not in LMFDB) |