Properties

Label 2.53.b_cq
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $1 + x + 68 x^{2} + 53 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.372328438702$, $\pm0.651829555365$
Angle rank:  $2$ (numerical)
Number field:  4.0.2172124.1
Galois group:  $D_{4}$
Jacobians:  $144$
Isomorphism classes:  144

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2932$ $8279968$ $22157557936$ $62275858359424$ $174883698455168932$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $55$ $2945$ $148834$ $7892529$ $418186475$ $22163854070$ $1174712275295$ $62259718483969$ $3299763538727002$ $174887469873803225$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The endomorphism algebra of this simple isogeny class is 4.0.2172124.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.ab_cq$2$(not in LMFDB)