Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 6 x + 74 x^{2} + 246 x^{3} + 1681 x^{4}$ |
| Frobenius angles: | $\pm0.472048372862$, $\pm0.687749235717$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.83232.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $124$ |
| Isomorphism classes: | 240 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2008$ | $3020032$ | $4724119192$ | $7982741864448$ | $13422076284068248$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $48$ | $1794$ | $68544$ | $2824990$ | $115851168$ | $4750096290$ | $194755519440$ | $7984920880318$ | $327381878733840$ | $13422659672884674$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 124 curves (of which all are hyperelliptic):
- $y^2=9 x^6+25 x^5+18 x^4+34 x^3+22 x^2+30 x+21$
- $y^2=33 x^6+26 x^5+27 x^4+24 x^3+6 x^2+x+26$
- $y^2=14 x^6+20 x^5+20 x^4+38 x^2+39 x+33$
- $y^2=25 x^6+31 x^5+40 x^4+x^3+7 x^2+38 x+18$
- $y^2=13 x^6+13 x^5+12 x^4+20 x^3+26 x^2+32 x+37$
- $y^2=34 x^6+3 x^4+7 x^3+11 x^2+9 x+4$
- $y^2=32 x^6+20 x^5+16 x^4+20 x^3+23 x+38$
- $y^2=7 x^6+35 x^5+40 x^4+10 x^3+38 x^2+14$
- $y^2=27 x^6+39 x^5+x^4+30 x^3+x^2+25 x+8$
- $y^2=37 x^6+18 x^5+x^4+38 x^3+25 x^2+33 x+10$
- $y^2=18 x^6+38 x^5+10 x^4+7 x^3+28 x^2+21 x+28$
- $y^2=4 x^6+23 x^5+31 x^4+20 x^3+11 x^2+29 x+1$
- $y^2=35 x^6+37 x^5+9 x^4+25 x^3+21 x^2+38 x+17$
- $y^2=10 x^6+24 x^5+39 x^3+24 x^2+11 x+35$
- $y^2=8 x^6+39 x^5+39 x^4+21 x^3+9 x^2+23 x+17$
- $y^2=38 x^6+11 x^5+21 x^4+6 x^3+34 x^2+33 x+19$
- $y^2=7 x^6+21 x^5+6 x^4+3 x^3+10 x^2+37 x+40$
- $y^2=33 x^6+18 x^5+33 x^4+24 x^3+6 x+22$
- $y^2=14 x^6+38 x^5+39 x^4+27 x^3+14 x^2+14 x$
- $y^2=39 x^6+28 x^5+19 x^4+35 x^3+35 x^2+10 x+40$
- and 104 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is 4.0.83232.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.41.ag_cw | $2$ | (not in LMFDB) |