Properties

Label 2-3520-1.1-c1-0-67
Degree $2$
Conductor $3520$
Sign $-1$
Analytic cond. $28.1073$
Root an. cond. $5.30163$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s − 3·9-s − 11-s − 8·19-s + 8·23-s + 25-s − 10·29-s − 8·31-s + 2·35-s + 10·37-s − 2·41-s − 6·43-s − 3·45-s + 8·47-s − 3·49-s − 14·53-s − 55-s − 4·59-s − 10·61-s − 6·63-s + 4·67-s − 8·73-s − 2·77-s + 4·79-s + 9·81-s + 10·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s − 9-s − 0.301·11-s − 1.83·19-s + 1.66·23-s + 1/5·25-s − 1.85·29-s − 1.43·31-s + 0.338·35-s + 1.64·37-s − 0.312·41-s − 0.914·43-s − 0.447·45-s + 1.16·47-s − 3/7·49-s − 1.92·53-s − 0.134·55-s − 0.520·59-s − 1.28·61-s − 0.755·63-s + 0.488·67-s − 0.936·73-s − 0.227·77-s + 0.450·79-s + 81-s + 1.09·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3520\)    =    \(2^{6} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(28.1073\)
Root analytic conductor: \(5.30163\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.184249725851853803834532515265, −7.60671209192694772214603774398, −6.63150790425675055814778311059, −5.88922529047574957731066072353, −5.21298710087630634622403275624, −4.48156605392211559871508964750, −3.39055982896274013705720197906, −2.43781193753337672507746790032, −1.60990262564069096103734615354, 0, 1.60990262564069096103734615354, 2.43781193753337672507746790032, 3.39055982896274013705720197906, 4.48156605392211559871508964750, 5.21298710087630634622403275624, 5.88922529047574957731066072353, 6.63150790425675055814778311059, 7.60671209192694772214603774398, 8.184249725851853803834532515265

Graph of the $Z$-function along the critical line