L(s) = 1 | + 2·3-s + 2·5-s + 7-s + 3·9-s + 11-s + 5·13-s + 4·15-s + 3·17-s + 8·19-s + 2·21-s + 8·23-s + 3·25-s + 4·27-s + 2·29-s − 4·31-s + 2·33-s + 2·35-s − 10·37-s + 10·39-s − 8·41-s − 10·43-s + 6·45-s + 7·47-s − 9·49-s + 6·51-s − 6·53-s + 2·55-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.894·5-s + 0.377·7-s + 9-s + 0.301·11-s + 1.38·13-s + 1.03·15-s + 0.727·17-s + 1.83·19-s + 0.436·21-s + 1.66·23-s + 3/5·25-s + 0.769·27-s + 0.371·29-s − 0.718·31-s + 0.348·33-s + 0.338·35-s − 1.64·37-s + 1.60·39-s − 1.24·41-s − 1.52·43-s + 0.894·45-s + 1.02·47-s − 9/7·49-s + 0.840·51-s − 0.824·53-s + 0.269·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 12110400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12110400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(8.467358499\) |
\(L(\frac12)\) |
\(\approx\) |
\(8.467358499\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.720748453953804990023593105745, −8.581510003872410901146493975645, −7.939032316471038849532849341693, −7.907896312069253172322104653193, −7.18688487881422149486291501741, −7.04811121401955831763877638323, −6.51396622013579905175007817657, −6.38610032294331897163552789587, −5.52829861606563717789666439080, −5.42530868124087232264572227755, −4.94973844894410448830168837325, −4.76650737803926638518016847568, −3.81381074792260064834914904458, −3.59248335689119721197743422850, −3.12516177763803609415360403088, −3.10278892780184392393689431027, −2.12613722404525038295746779069, −1.81942565094386554078288588296, −1.23442023144852245251640699097, −0.931683207846374921169772203959,
0.931683207846374921169772203959, 1.23442023144852245251640699097, 1.81942565094386554078288588296, 2.12613722404525038295746779069, 3.10278892780184392393689431027, 3.12516177763803609415360403088, 3.59248335689119721197743422850, 3.81381074792260064834914904458, 4.76650737803926638518016847568, 4.94973844894410448830168837325, 5.42530868124087232264572227755, 5.52829861606563717789666439080, 6.38610032294331897163552789587, 6.51396622013579905175007817657, 7.04811121401955831763877638323, 7.18688487881422149486291501741, 7.907896312069253172322104653193, 7.939032316471038849532849341693, 8.581510003872410901146493975645, 8.720748453953804990023593105745