L(s) = 1 | − 2·3-s − 5·5-s + 4·7-s + 3·9-s + 8·11-s − 13-s + 10·15-s − 4·17-s + 8·19-s − 8·21-s + 3·23-s + 10·25-s − 4·27-s + 3·29-s − 8·31-s − 16·33-s − 20·35-s − 37-s + 2·39-s − 17·41-s + 15·43-s − 15·45-s − 15·47-s + 3·49-s + 8·51-s + 9·53-s − 40·55-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 2.23·5-s + 1.51·7-s + 9-s + 2.41·11-s − 0.277·13-s + 2.58·15-s − 0.970·17-s + 1.83·19-s − 1.74·21-s + 0.625·23-s + 2·25-s − 0.769·27-s + 0.557·29-s − 1.43·31-s − 2.78·33-s − 3.38·35-s − 0.164·37-s + 0.320·39-s − 2.65·41-s + 2.28·43-s − 2.23·45-s − 2.18·47-s + 3/7·49-s + 1.12·51-s + 1.23·53-s − 5.39·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 11614464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11614464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.547784894\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.547784894\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.566895574336686341532281628374, −8.530635705674788266335818021149, −7.84833262692399986110274740309, −7.72861748543477130248396113957, −7.16880883513211192196862309299, −7.08664310226954563042216446217, −6.60683767318551020953830878095, −6.40861294810726719433466718549, −5.50472107811706613238129997922, −5.43721269986009702158609803237, −4.75509544335424691449037189980, −4.67105292440982797478732204269, −4.17480375470926985408209685667, −3.86439692611807571222961528028, −3.45181325800960392245730108069, −3.13089368022580925179178048034, −1.84869590124413878024897715859, −1.73715063629978224967945621350, −0.912571750520417726654302185450, −0.55438868112504039347535894667,
0.55438868112504039347535894667, 0.912571750520417726654302185450, 1.73715063629978224967945621350, 1.84869590124413878024897715859, 3.13089368022580925179178048034, 3.45181325800960392245730108069, 3.86439692611807571222961528028, 4.17480375470926985408209685667, 4.67105292440982797478732204269, 4.75509544335424691449037189980, 5.43721269986009702158609803237, 5.50472107811706613238129997922, 6.40861294810726719433466718549, 6.60683767318551020953830878095, 7.08664310226954563042216446217, 7.16880883513211192196862309299, 7.72861748543477130248396113957, 7.84833262692399986110274740309, 8.530635705674788266335818021149, 8.566895574336686341532281628374