Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x - 3 x^{2} + 236 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.296125371645$, $\pm0.828272687622$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.236225.1 |
Galois group: | $D_{4}$ |
Jacobians: | $120$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3719$ | $12045841$ | $42346854656$ | $146947804605209$ | $511084557242647399$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $64$ | $3460$ | $206188$ | $12127044$ | $714879264$ | $42180628726$ | $2488645871776$ | $146830437267204$ | $8662995937494772$ | $511116753817961700$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=26 x^6+52 x^5+3 x^4+16 x^3+47 x^2+34 x+15$
- $y^2=39 x^6+21 x^5+53 x^4+39 x^3+2 x^2+2 x+41$
- $y^2=45 x^6+33 x^5+42 x^4+17 x^3+42 x^2+39 x+11$
- $y^2=52 x^6+49 x^5+27 x^4+36 x^3+x^2+42 x+9$
- $y^2=6 x^6+32 x^5+4 x^4+17 x^3+44 x^2+14 x+48$
- $y^2=58 x^6+36 x^5+24 x^4+7 x^3+20 x^2+42 x+53$
- $y^2=13 x^6+45 x^5+33 x^4+28 x^3+51 x^2+58 x+40$
- $y^2=24 x^6+55 x^5+10 x^4+51 x^3+2 x^2+12 x+25$
- $y^2=38 x^6+35 x^5+43 x^4+48 x^3+30 x^2+47 x+12$
- $y^2=7 x^6+39 x^5+36 x^4+7 x^3+39 x^2+51 x+38$
- $y^2=42 x^6+41 x^5+11 x^4+11 x^3+4 x^2+20 x+28$
- $y^2=12 x^6+18 x^5+8 x^4+6 x^3+6 x^2+25 x+53$
- $y^2=53 x^6+43 x^5+42 x^4+6 x^3+3 x^2+24 x+37$
- $y^2=51 x^6+11 x^5+26 x^4+50 x^3+19 x^2+26 x+25$
- $y^2=6 x^6+18 x^5+35 x^4+25 x^3+42 x^2+28 x+12$
- $y^2=24 x^6+12 x^5+33 x^4+11 x^3+26 x^2+9 x+22$
- $y^2=31 x^6+12 x^5+31 x^4+12 x^3+10 x^2+17 x+1$
- $y^2=15 x^6+15 x^5+38 x^4+7 x^3+41 x^2+16 x+6$
- $y^2=38 x^6+46 x^5+12 x^4+26 x^3+10 x^2+20 x+37$
- $y^2=28 x^6+35 x^5+42 x^4+16 x^3+25 x^2+3 x+9$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is 4.0.236225.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.ae_ad | $2$ | (not in LMFDB) |