Invariants
| Base field: | $\F_{17}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 4 x + 33 x^{2} + 68 x^{3} + 289 x^{4}$ |
| Frobenius angles: | $\pm0.490886355420$, $\pm0.671725076155$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.85025.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $20$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $395$ | $99145$ | $23516720$ | $6954526025$ | $2016967574875$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $22$ | $340$ | $4786$ | $83268$ | $1420542$ | $24137470$ | $410370766$ | $6975659268$ | $118587019282$ | $2015998415700$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=15 x^6+15 x^5+11 x^4+7 x^2+10 x+15$
- $y^2=9 x^6+4 x^5+9 x^4+5 x^3+3 x^2+9 x+2$
- $y^2=8 x^6+3 x^5+14 x^4+14 x^3+x^2+6 x+11$
- $y^2=15 x^6+8 x^5+13 x^4+13 x^3+5 x^2+16 x+13$
- $y^2=12 x^6+14 x^5+14 x^4+7 x^3+16 x^2+6 x+1$
- $y^2=16 x^6+9 x^4+14 x^3+10 x^2+7 x+2$
- $y^2=x^6+2 x^5+15 x^4+4 x^3+7 x^2+x+16$
- $y^2=10 x^6+9 x^5+3 x^4+6 x^3+4 x^2+5 x+15$
- $y^2=x^6+9 x^5+5 x^4+10 x^3+9 x^2+3 x+5$
- $y^2=13 x^6+11 x^5+13 x^4+16 x^3+14 x^2+5 x+15$
- $y^2=12 x^6+9 x^5+4 x^4+14 x^3+2 x^2+2 x+10$
- $y^2=15 x^6+2 x^5+14 x^4+x^2+12 x+12$
- $y^2=12 x^6+12 x^5+13 x^4+16 x^3+11 x^2+10 x+1$
- $y^2=8 x^6+15 x^5+9 x^4+2 x^3+4 x^2+8 x+3$
- $y^2=5 x^6+16 x^4+3 x^3+2 x^2+3 x+4$
- $y^2=16 x^6+14 x^5+5 x^4+2 x^3+6 x+2$
- $y^2=14 x^6+9 x^5+7 x^4+2 x^3+3 x^2+6$
- $y^2=8 x^6+2 x^5+6 x^4+6 x^3+5 x^2+x+5$
- $y^2=12 x^6+12 x^5+13 x^4+16 x^3+3 x^2+5 x+8$
- $y^2=15 x^6+15 x^5+2 x^4+5 x^3+7 x^2+5 x+10$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$| The endomorphism algebra of this simple isogeny class is 4.0.85025.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.17.ae_bh | $2$ | (not in LMFDB) |