L(s) = 1 | − 4·2-s − 20·4-s + 108·7-s + 96·8-s + 110·9-s + 6·13-s − 432·14-s + 158·16-s − 440·18-s − 24·26-s − 2.16e3·28-s − 588·29-s − 1.28e3·32-s − 2.20e3·36-s + 940·37-s + 772·47-s + 4.08e3·49-s − 120·52-s + 1.03e4·56-s + 2.35e3·58-s − 1.46e3·61-s + 1.18e4·63-s + 32·64-s − 3.29e3·67-s + 1.05e4·72-s + 3.22e3·73-s − 3.76e3·74-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 5/2·4-s + 5.83·7-s + 4.24·8-s + 4.07·9-s + 0.128·13-s − 8.24·14-s + 2.46·16-s − 5.76·18-s − 0.181·26-s − 14.5·28-s − 3.76·29-s − 7.09·32-s − 10.1·36-s + 4.17·37-s + 2.39·47-s + 11.9·49-s − 0.320·52-s + 24.7·56-s + 5.32·58-s − 3.06·61-s + 23.7·63-s + 1/16·64-s − 6.00·67-s + 17.2·72-s + 5.16·73-s − 5.90·74-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{28} \cdot 13^{14}\right)^{s/2} \, \Gamma_{\C}(s)^{14} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{28} \cdot 13^{14}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{14} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(6.584672127\) |
\(L(\frac12)\) |
\(\approx\) |
\(6.584672127\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 - 6 T + 5495 T^{2} + 8420 p T^{3} + 1123301 p T^{4} + 5491462 p^{2} T^{5} + 10072419 p^{3} T^{6} + 102062680 p^{4} T^{7} + 10072419 p^{6} T^{8} + 5491462 p^{8} T^{9} + 1123301 p^{10} T^{10} + 8420 p^{13} T^{11} + 5495 p^{15} T^{12} - 6 p^{18} T^{13} + p^{21} T^{14} \) |
good | 2 | \( ( 1 + p T + p^{4} T^{2} + p^{5} T^{3} + 153 T^{4} + 55 p^{3} T^{5} + 207 p^{3} T^{6} + 153 p^{5} T^{7} + 207 p^{6} T^{8} + 55 p^{9} T^{9} + 153 p^{9} T^{10} + p^{17} T^{11} + p^{19} T^{12} + p^{19} T^{13} + p^{21} T^{14} )^{2} \) |
| 3 | \( 1 - 110 T^{2} + 871 p^{2} T^{4} - 422860 T^{6} + 18751589 T^{8} - 26302982 p^{3} T^{10} + 23341671931 T^{12} - 672312341672 T^{14} + 23341671931 p^{6} T^{16} - 26302982 p^{15} T^{18} + 18751589 p^{18} T^{20} - 422860 p^{24} T^{22} + 871 p^{32} T^{24} - 110 p^{36} T^{26} + p^{42} T^{28} \) |
| 7 | \( ( 1 - 54 T + 2333 T^{2} - 11476 p T^{3} + 2325761 T^{4} - 57742106 T^{5} + 1284512613 T^{6} - 25063331336 T^{7} + 1284512613 p^{3} T^{8} - 57742106 p^{6} T^{9} + 2325761 p^{9} T^{10} - 11476 p^{13} T^{11} + 2333 p^{15} T^{12} - 54 p^{18} T^{13} + p^{21} T^{14} )^{2} \) |
| 11 | \( 1 - 12358 T^{2} + 73222823 T^{4} - 279269174812 T^{6} + 776679460198925 T^{8} - 1686613805523637130 T^{10} + \)\(29\!\cdots\!11\)\( T^{12} - \)\(43\!\cdots\!40\)\( T^{14} + \)\(29\!\cdots\!11\)\( p^{6} T^{16} - 1686613805523637130 p^{12} T^{18} + 776679460198925 p^{18} T^{20} - 279269174812 p^{24} T^{22} + 73222823 p^{30} T^{24} - 12358 p^{36} T^{26} + p^{42} T^{28} \) |
| 17 | \( 1 - 36730 T^{2} + 41296795 p T^{4} - 9171354963012 T^{6} + 90720639059398969 T^{8} - \)\(71\!\cdots\!46\)\( T^{10} + \)\(27\!\cdots\!23\)\( p T^{12} - \)\(24\!\cdots\!24\)\( T^{14} + \)\(27\!\cdots\!23\)\( p^{7} T^{16} - \)\(71\!\cdots\!46\)\( p^{12} T^{18} + 90720639059398969 p^{18} T^{20} - 9171354963012 p^{24} T^{22} + 41296795 p^{31} T^{24} - 36730 p^{36} T^{26} + p^{42} T^{28} \) |
| 19 | \( 1 - 56638 T^{2} + 1587803255 T^{4} - 29442000078460 T^{6} + 406369274698402317 T^{8} - \)\(44\!\cdots\!38\)\( T^{10} + \)\(39\!\cdots\!83\)\( T^{12} - \)\(29\!\cdots\!00\)\( T^{14} + \)\(39\!\cdots\!83\)\( p^{6} T^{16} - \)\(44\!\cdots\!38\)\( p^{12} T^{18} + 406369274698402317 p^{18} T^{20} - 29442000078460 p^{24} T^{22} + 1587803255 p^{30} T^{24} - 56638 p^{36} T^{26} + p^{42} T^{28} \) |
| 23 | \( 1 - 78514 T^{2} + 3204753527 T^{4} - 92013049435668 T^{6} + 2062719255318115621 T^{8} - \)\(37\!\cdots\!62\)\( T^{10} + \)\(58\!\cdots\!55\)\( T^{12} - \)\(76\!\cdots\!12\)\( T^{14} + \)\(58\!\cdots\!55\)\( p^{6} T^{16} - \)\(37\!\cdots\!62\)\( p^{12} T^{18} + 2062719255318115621 p^{18} T^{20} - 92013049435668 p^{24} T^{22} + 3204753527 p^{30} T^{24} - 78514 p^{36} T^{26} + p^{42} T^{28} \) |
| 29 | \( ( 1 + 294 T + 109035 T^{2} + 20517020 T^{3} + 5002413109 T^{4} + 773140090362 T^{5} + 158882226378071 T^{6} + 21393846073167368 T^{7} + 158882226378071 p^{3} T^{8} + 773140090362 p^{6} T^{9} + 5002413109 p^{9} T^{10} + 20517020 p^{12} T^{11} + 109035 p^{15} T^{12} + 294 p^{18} T^{13} + p^{21} T^{14} )^{2} \) |
| 31 | \( 1 - 250346 T^{2} + 31735294927 T^{4} - 2684453200058676 T^{6} + \)\(16\!\cdots\!97\)\( T^{8} - \)\(83\!\cdots\!22\)\( T^{10} + \)\(33\!\cdots\!03\)\( T^{12} - \)\(10\!\cdots\!28\)\( T^{14} + \)\(33\!\cdots\!03\)\( p^{6} T^{16} - \)\(83\!\cdots\!22\)\( p^{12} T^{18} + \)\(16\!\cdots\!97\)\( p^{18} T^{20} - 2684453200058676 p^{24} T^{22} + 31735294927 p^{30} T^{24} - 250346 p^{36} T^{26} + p^{42} T^{28} \) |
| 37 | \( ( 1 - 470 T + 318327 T^{2} - 102025324 T^{3} + 42061831113 T^{4} - 10683186485418 T^{5} + 3318516181175575 T^{6} - 681773941683913832 T^{7} + 3318516181175575 p^{3} T^{8} - 10683186485418 p^{6} T^{9} + 42061831113 p^{9} T^{10} - 102025324 p^{12} T^{11} + 318327 p^{15} T^{12} - 470 p^{18} T^{13} + p^{21} T^{14} )^{2} \) |
| 41 | \( 1 - 271414 T^{2} + 44449267067 T^{4} - 5606468972235996 T^{6} + \)\(60\!\cdots\!93\)\( T^{8} - \)\(55\!\cdots\!90\)\( T^{10} + \)\(45\!\cdots\!39\)\( T^{12} - \)\(33\!\cdots\!80\)\( T^{14} + \)\(45\!\cdots\!39\)\( p^{6} T^{16} - \)\(55\!\cdots\!90\)\( p^{12} T^{18} + \)\(60\!\cdots\!93\)\( p^{18} T^{20} - 5606468972235996 p^{24} T^{22} + 44449267067 p^{30} T^{24} - 271414 p^{36} T^{26} + p^{42} T^{28} \) |
| 43 | \( 1 - 687302 T^{2} + 241180616687 T^{4} - 56543572112880940 T^{6} + \)\(98\!\cdots\!81\)\( T^{8} - \)\(13\!\cdots\!22\)\( T^{10} + \)\(14\!\cdots\!15\)\( T^{12} - \)\(12\!\cdots\!72\)\( T^{14} + \)\(14\!\cdots\!15\)\( p^{6} T^{16} - \)\(13\!\cdots\!22\)\( p^{12} T^{18} + \)\(98\!\cdots\!81\)\( p^{18} T^{20} - 56543572112880940 p^{24} T^{22} + 241180616687 p^{30} T^{24} - 687302 p^{36} T^{26} + p^{42} T^{28} \) |
| 47 | \( ( 1 - 386 T + 471117 T^{2} - 120513092 T^{3} + 99001425209 T^{4} - 19759245910542 T^{5} + 14080854648355133 T^{6} - 2390748635870883736 T^{7} + 14080854648355133 p^{3} T^{8} - 19759245910542 p^{6} T^{9} + 99001425209 p^{9} T^{10} - 120513092 p^{12} T^{11} + 471117 p^{15} T^{12} - 386 p^{18} T^{13} + p^{21} T^{14} )^{2} \) |
| 53 | \( 1 - 996334 T^{2} + 484318931747 T^{4} - 155483656952480428 T^{6} + \)\(37\!\cdots\!17\)\( T^{8} - \)\(72\!\cdots\!94\)\( T^{10} + \)\(12\!\cdots\!27\)\( T^{12} - \)\(18\!\cdots\!08\)\( T^{14} + \)\(12\!\cdots\!27\)\( p^{6} T^{16} - \)\(72\!\cdots\!94\)\( p^{12} T^{18} + \)\(37\!\cdots\!17\)\( p^{18} T^{20} - 155483656952480428 p^{24} T^{22} + 484318931747 p^{30} T^{24} - 996334 p^{36} T^{26} + p^{42} T^{28} \) |
| 59 | \( 1 - 1657502 T^{2} + 1415661698375 T^{4} - 810149316940284796 T^{6} + \)\(34\!\cdots\!49\)\( T^{8} - \)\(11\!\cdots\!54\)\( T^{10} + \)\(31\!\cdots\!19\)\( T^{12} - \)\(71\!\cdots\!44\)\( T^{14} + \)\(31\!\cdots\!19\)\( p^{6} T^{16} - \)\(11\!\cdots\!54\)\( p^{12} T^{18} + \)\(34\!\cdots\!49\)\( p^{18} T^{20} - 810149316940284796 p^{24} T^{22} + 1415661698375 p^{30} T^{24} - 1657502 p^{36} T^{26} + p^{42} T^{28} \) |
| 61 | \( ( 1 + 730 T + 1242147 T^{2} + 831341412 T^{3} + 708901440253 T^{4} + 424396208710438 T^{5} + 244692387212101815 T^{6} + \)\(12\!\cdots\!08\)\( T^{7} + 244692387212101815 p^{3} T^{8} + 424396208710438 p^{6} T^{9} + 708901440253 p^{9} T^{10} + 831341412 p^{12} T^{11} + 1242147 p^{15} T^{12} + 730 p^{18} T^{13} + p^{21} T^{14} )^{2} \) |
| 67 | \( ( 1 + 1646 T + 2002545 T^{2} + 1573617780 T^{3} + 1066920817153 T^{4} + 538266837503922 T^{5} + 275569421024656297 T^{6} + \)\(13\!\cdots\!40\)\( T^{7} + 275569421024656297 p^{3} T^{8} + 538266837503922 p^{6} T^{9} + 1066920817153 p^{9} T^{10} + 1573617780 p^{12} T^{11} + 2002545 p^{15} T^{12} + 1646 p^{18} T^{13} + p^{21} T^{14} )^{2} \) |
| 71 | \( 1 - 2287442 T^{2} + 2847434457311 T^{4} - 2474880637852592724 T^{6} + \)\(16\!\cdots\!81\)\( T^{8} - \)\(91\!\cdots\!26\)\( T^{10} + \)\(42\!\cdots\!87\)\( T^{12} - \)\(16\!\cdots\!16\)\( T^{14} + \)\(42\!\cdots\!87\)\( p^{6} T^{16} - \)\(91\!\cdots\!26\)\( p^{12} T^{18} + \)\(16\!\cdots\!81\)\( p^{18} T^{20} - 2474880637852592724 p^{24} T^{22} + 2847434457311 p^{30} T^{24} - 2287442 p^{36} T^{26} + p^{42} T^{28} \) |
| 73 | \( ( 1 - 1610 T + 2792139 T^{2} - 37934564 p T^{3} + 2944910965601 T^{4} - 2243019397603590 T^{5} + 1811447209789220275 T^{6} - \)\(11\!\cdots\!16\)\( T^{7} + 1811447209789220275 p^{3} T^{8} - 2243019397603590 p^{6} T^{9} + 2944910965601 p^{9} T^{10} - 37934564 p^{13} T^{11} + 2792139 p^{15} T^{12} - 1610 p^{18} T^{13} + p^{21} T^{14} )^{2} \) |
| 79 | \( ( 1 - 512 T + 2045465 T^{2} - 1210402496 T^{3} + 2161877892581 T^{4} - 1326231242967808 T^{5} + 1498346935045947885 T^{6} - \)\(83\!\cdots\!48\)\( T^{7} + 1498346935045947885 p^{3} T^{8} - 1326231242967808 p^{6} T^{9} + 2161877892581 p^{9} T^{10} - 1210402496 p^{12} T^{11} + 2045465 p^{15} T^{12} - 512 p^{18} T^{13} + p^{21} T^{14} )^{2} \) |
| 83 | \( ( 1 + 226 T + 551697 T^{2} - 511708068 T^{3} + 326757867457 T^{4} - 337380082800738 T^{5} + 214284091113451049 T^{6} - \)\(30\!\cdots\!84\)\( T^{7} + 214284091113451049 p^{3} T^{8} - 337380082800738 p^{6} T^{9} + 326757867457 p^{9} T^{10} - 511708068 p^{12} T^{11} + 551697 p^{15} T^{12} + 226 p^{18} T^{13} + p^{21} T^{14} )^{2} \) |
| 89 | \( 1 - 5109934 T^{2} + 12320790316939 T^{4} - 19197704418883074284 T^{6} + \)\(22\!\cdots\!25\)\( T^{8} - \)\(21\!\cdots\!90\)\( T^{10} + \)\(17\!\cdots\!59\)\( T^{12} - \)\(13\!\cdots\!92\)\( T^{14} + \)\(17\!\cdots\!59\)\( p^{6} T^{16} - \)\(21\!\cdots\!90\)\( p^{12} T^{18} + \)\(22\!\cdots\!25\)\( p^{18} T^{20} - 19197704418883074284 p^{24} T^{22} + 12320790316939 p^{30} T^{24} - 5109934 p^{36} T^{26} + p^{42} T^{28} \) |
| 97 | \( ( 1 + 1982 T + 4421403 T^{2} + 5685747788 T^{3} + 7421769693833 T^{4} + 7694710573386402 T^{5} + 7739121271091709979 T^{6} + \)\(74\!\cdots\!04\)\( T^{7} + 7739121271091709979 p^{3} T^{8} + 7694710573386402 p^{6} T^{9} + 7421769693833 p^{9} T^{10} + 5685747788 p^{12} T^{11} + 4421403 p^{15} T^{12} + 1982 p^{18} T^{13} + p^{21} T^{14} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{28} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−3.05557567277538039150018633288, −2.87813965575833789482074598897, −2.81836832896434153655907618913, −2.48575670172825518322646321815, −2.43199806787242713951062471143, −2.38385779074776564244516254017, −2.37709765489022617010114747866, −2.11355560584711313574437446677, −1.99910674953034886523875519861, −1.86164024032385107667169171893, −1.84769537987803970267498628122, −1.65270965565933347725937650920, −1.59242131216077303440746875421, −1.43023872237056155209701713505, −1.37968352521761517422870580483, −1.36357311151824406247620965545, −1.35166667452475675259149872875, −1.20138469624739790102201642636, −1.14178370458727739524561071665, −0.75485113101469053759113137251, −0.60287573092453937449055728504, −0.55947467894235674865704986802, −0.33865616466534539526183719149, −0.32972245259846679840215035406, −0.15175086396277666241705094482,
0.15175086396277666241705094482, 0.32972245259846679840215035406, 0.33865616466534539526183719149, 0.55947467894235674865704986802, 0.60287573092453937449055728504, 0.75485113101469053759113137251, 1.14178370458727739524561071665, 1.20138469624739790102201642636, 1.35166667452475675259149872875, 1.36357311151824406247620965545, 1.37968352521761517422870580483, 1.43023872237056155209701713505, 1.59242131216077303440746875421, 1.65270965565933347725937650920, 1.84769537987803970267498628122, 1.86164024032385107667169171893, 1.99910674953034886523875519861, 2.11355560584711313574437446677, 2.37709765489022617010114747866, 2.38385779074776564244516254017, 2.43199806787242713951062471143, 2.48575670172825518322646321815, 2.81836832896434153655907618913, 2.87813965575833789482074598897, 3.05557567277538039150018633288
Plot not available for L-functions of degree greater than 10.