Properties

Label 325.4.d.c.324.12
Level $325$
Weight $4$
Character 325.324
Analytic conductor $19.176$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,4,Mod(324,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.324"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 325.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1756207519\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 84x^{12} + 2674x^{10} + 40048x^{8} + 278769x^{6} + 727552x^{4} + 339456x^{2} + 9216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.12
Root \(4.27643i\) of defining polynomial
Character \(\chi\) \(=\) 325.324
Dual form 325.4.d.c.324.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.27643 q^{2} +7.17327i q^{3} +10.2878 q^{4} +30.6760i q^{6} -5.20875 q^{7} +9.78383 q^{8} -24.4558 q^{9} +46.2698i q^{11} +73.7975i q^{12} +(-15.5139 + 44.2303i) q^{13} -22.2749 q^{14} -40.4629 q^{16} -14.9028i q^{17} -104.584 q^{18} -75.6973i q^{19} -37.3638i q^{21} +197.869i q^{22} +134.654i q^{23} +70.1820i q^{24} +(-66.3442 + 189.148i) q^{26} +18.2501i q^{27} -53.5869 q^{28} +236.857 q^{29} -65.0786i q^{31} -251.308 q^{32} -331.906 q^{33} -63.7309i q^{34} -251.598 q^{36} +311.148 q^{37} -323.714i q^{38} +(-317.276 - 111.286i) q^{39} -86.3371i q^{41} -159.784i q^{42} -299.321i q^{43} +476.016i q^{44} +575.840i q^{46} +108.671 q^{47} -290.252i q^{48} -315.869 q^{49} +106.902 q^{51} +(-159.605 + 455.035i) q^{52} +700.355i q^{53} +78.0454i q^{54} -50.9615 q^{56} +542.997 q^{57} +1012.90 q^{58} -287.115i q^{59} +59.0462 q^{61} -278.304i q^{62} +127.384 q^{63} -750.996 q^{64} -1419.37 q^{66} -304.295 q^{67} -153.318i q^{68} -965.912 q^{69} -274.262i q^{71} -239.271 q^{72} +835.177 q^{73} +1330.60 q^{74} -778.762i q^{76} -241.008i q^{77} +(-1356.81 - 475.905i) q^{78} +382.320 q^{79} -791.220 q^{81} -369.214i q^{82} +1493.88 q^{83} -384.393i q^{84} -1280.03i q^{86} +1699.04i q^{87} +452.695i q^{88} +1498.07i q^{89} +(80.8082 - 230.385i) q^{91} +1385.30i q^{92} +466.827 q^{93} +464.725 q^{94} -1802.70i q^{96} +1509.05 q^{97} -1350.79 q^{98} -1131.56i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 4 q^{2} + 56 q^{4} + 108 q^{7} - 48 q^{8} - 158 q^{9} + 6 q^{13} + 152 q^{14} + 280 q^{16} - 272 q^{18} - 344 q^{26} + 572 q^{28} - 588 q^{29} - 1788 q^{32} + 248 q^{33} + 496 q^{36} + 940 q^{37}+ \cdots + 7364 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.27643 1.51195 0.755973 0.654603i \(-0.227164\pi\)
0.755973 + 0.654603i \(0.227164\pi\)
\(3\) 7.17327i 1.38050i 0.723573 + 0.690248i \(0.242499\pi\)
−0.723573 + 0.690248i \(0.757501\pi\)
\(4\) 10.2878 1.28598
\(5\) 0 0
\(6\) 30.6760i 2.08724i
\(7\) −5.20875 −0.281246 −0.140623 0.990063i \(-0.544911\pi\)
−0.140623 + 0.990063i \(0.544911\pi\)
\(8\) 9.78383 0.432388
\(9\) −24.4558 −0.905771
\(10\) 0 0
\(11\) 46.2698i 1.26826i 0.773227 + 0.634130i \(0.218642\pi\)
−0.773227 + 0.634130i \(0.781358\pi\)
\(12\) 73.7975i 1.77529i
\(13\) −15.5139 + 44.2303i −0.330984 + 0.943637i
\(14\) −22.2749 −0.425229
\(15\) 0 0
\(16\) −40.4629 −0.632234
\(17\) 14.9028i 0.212616i −0.994333 0.106308i \(-0.966097\pi\)
0.994333 0.106308i \(-0.0339029\pi\)
\(18\) −104.584 −1.36948
\(19\) 75.6973i 0.914008i −0.889465 0.457004i \(-0.848923\pi\)
0.889465 0.457004i \(-0.151077\pi\)
\(20\) 0 0
\(21\) 37.3638i 0.388259i
\(22\) 197.869i 1.91754i
\(23\) 134.654i 1.22075i 0.792111 + 0.610377i \(0.208982\pi\)
−0.792111 + 0.610377i \(0.791018\pi\)
\(24\) 70.1820i 0.596910i
\(25\) 0 0
\(26\) −66.3442 + 189.148i −0.500429 + 1.42673i
\(27\) 18.2501i 0.130083i
\(28\) −53.5869 −0.361677
\(29\) 236.857 1.51666 0.758332 0.651868i \(-0.226014\pi\)
0.758332 + 0.651868i \(0.226014\pi\)
\(30\) 0 0
\(31\) 65.0786i 0.377047i −0.982069 0.188524i \(-0.939630\pi\)
0.982069 0.188524i \(-0.0603702\pi\)
\(32\) −251.308 −1.38829
\(33\) −331.906 −1.75083
\(34\) 63.7309i 0.321463i
\(35\) 0 0
\(36\) −251.598 −1.16480
\(37\) 311.148 1.38250 0.691249 0.722617i \(-0.257061\pi\)
0.691249 + 0.722617i \(0.257061\pi\)
\(38\) 323.714i 1.38193i
\(39\) −317.276 111.286i −1.30269 0.456922i
\(40\) 0 0
\(41\) 86.3371i 0.328868i −0.986388 0.164434i \(-0.947420\pi\)
0.986388 0.164434i \(-0.0525798\pi\)
\(42\) 159.784i 0.587027i
\(43\) 299.321i 1.06154i −0.847517 0.530768i \(-0.821903\pi\)
0.847517 0.530768i \(-0.178097\pi\)
\(44\) 476.016i 1.63096i
\(45\) 0 0
\(46\) 575.840i 1.84572i
\(47\) 108.671 0.337263 0.168631 0.985679i \(-0.446065\pi\)
0.168631 + 0.985679i \(0.446065\pi\)
\(48\) 290.252i 0.872796i
\(49\) −315.869 −0.920901
\(50\) 0 0
\(51\) 106.902 0.293515
\(52\) −159.605 + 455.035i −0.425639 + 1.21350i
\(53\) 700.355i 1.81512i 0.419926 + 0.907558i \(0.362056\pi\)
−0.419926 + 0.907558i \(0.637944\pi\)
\(54\) 78.0454i 0.196678i
\(55\) 0 0
\(56\) −50.9615 −0.121608
\(57\) 542.997 1.26178
\(58\) 1012.90 2.29312
\(59\) 287.115i 0.633546i −0.948501 0.316773i \(-0.897401\pi\)
0.948501 0.316773i \(-0.102599\pi\)
\(60\) 0 0
\(61\) 59.0462 0.123936 0.0619680 0.998078i \(-0.480262\pi\)
0.0619680 + 0.998078i \(0.480262\pi\)
\(62\) 278.304i 0.570075i
\(63\) 127.384 0.254745
\(64\) −750.996 −1.46679
\(65\) 0 0
\(66\) −1419.37 −2.64716
\(67\) −304.295 −0.554859 −0.277429 0.960746i \(-0.589482\pi\)
−0.277429 + 0.960746i \(0.589482\pi\)
\(68\) 153.318i 0.273420i
\(69\) −965.912 −1.68525
\(70\) 0 0
\(71\) 274.262i 0.458435i −0.973375 0.229217i \(-0.926383\pi\)
0.973375 0.229217i \(-0.0736167\pi\)
\(72\) −239.271 −0.391645
\(73\) 835.177 1.33904 0.669521 0.742793i \(-0.266499\pi\)
0.669521 + 0.742793i \(0.266499\pi\)
\(74\) 1330.60 2.09026
\(75\) 0 0
\(76\) 778.762i 1.17540i
\(77\) 241.008i 0.356693i
\(78\) −1356.81 475.905i −1.96959 0.690841i
\(79\) 382.320 0.544486 0.272243 0.962229i \(-0.412235\pi\)
0.272243 + 0.962229i \(0.412235\pi\)
\(80\) 0 0
\(81\) −791.220 −1.08535
\(82\) 369.214i 0.497231i
\(83\) 1493.88 1.97559 0.987797 0.155746i \(-0.0497782\pi\)
0.987797 + 0.155746i \(0.0497782\pi\)
\(84\) 384.393i 0.499294i
\(85\) 0 0
\(86\) 1280.03i 1.60499i
\(87\) 1699.04i 2.09375i
\(88\) 452.695i 0.548381i
\(89\) 1498.07i 1.78421i 0.451827 + 0.892106i \(0.350772\pi\)
−0.451827 + 0.892106i \(0.649228\pi\)
\(90\) 0 0
\(91\) 80.8082 230.385i 0.0930879 0.265394i
\(92\) 1385.30i 1.56987i
\(93\) 466.827 0.520513
\(94\) 464.725 0.509923
\(95\) 0 0
\(96\) 1802.70i 1.91653i
\(97\) 1509.05 1.57959 0.789797 0.613369i \(-0.210186\pi\)
0.789797 + 0.613369i \(0.210186\pi\)
\(98\) −1350.79 −1.39235
\(99\) 1131.56i 1.14875i
\(100\) 0 0
\(101\) 1559.39 1.53629 0.768144 0.640277i \(-0.221180\pi\)
0.768144 + 0.640277i \(0.221180\pi\)
\(102\) 457.159 0.443779
\(103\) 519.651i 0.497114i 0.968617 + 0.248557i \(0.0799563\pi\)
−0.968617 + 0.248557i \(0.920044\pi\)
\(104\) −151.785 + 432.742i −0.143113 + 0.408017i
\(105\) 0 0
\(106\) 2995.02i 2.74436i
\(107\) 1678.80i 1.51678i −0.651801 0.758390i \(-0.725986\pi\)
0.651801 0.758390i \(-0.274014\pi\)
\(108\) 187.755i 0.167284i
\(109\) 484.862i 0.426068i −0.977045 0.213034i \(-0.931666\pi\)
0.977045 0.213034i \(-0.0683344\pi\)
\(110\) 0 0
\(111\) 2231.95i 1.90853i
\(112\) 210.762 0.177813
\(113\) 394.703i 0.328589i 0.986411 + 0.164294i \(0.0525347\pi\)
−0.986411 + 0.164294i \(0.947465\pi\)
\(114\) 2322.09 1.90775
\(115\) 0 0
\(116\) 2436.75 1.95040
\(117\) 379.405 1081.69i 0.299795 0.854718i
\(118\) 1227.83i 0.957888i
\(119\) 77.6251i 0.0597973i
\(120\) 0 0
\(121\) −809.891 −0.608483
\(122\) 252.507 0.187384
\(123\) 619.319 0.454001
\(124\) 669.519i 0.484876i
\(125\) 0 0
\(126\) 544.750 0.385160
\(127\) 887.714i 0.620251i −0.950696 0.310125i \(-0.899629\pi\)
0.950696 0.310125i \(-0.100371\pi\)
\(128\) −1201.12 −0.829413
\(129\) 2147.11 1.46545
\(130\) 0 0
\(131\) 655.450 0.437152 0.218576 0.975820i \(-0.429859\pi\)
0.218576 + 0.975820i \(0.429859\pi\)
\(132\) −3414.59 −2.25153
\(133\) 394.289i 0.257061i
\(134\) −1301.30 −0.838916
\(135\) 0 0
\(136\) 145.807i 0.0919325i
\(137\) −2649.45 −1.65224 −0.826122 0.563492i \(-0.809458\pi\)
−0.826122 + 0.563492i \(0.809458\pi\)
\(138\) −4130.65 −2.54800
\(139\) −1580.06 −0.964165 −0.482082 0.876126i \(-0.660119\pi\)
−0.482082 + 0.876126i \(0.660119\pi\)
\(140\) 0 0
\(141\) 779.529i 0.465590i
\(142\) 1172.86i 0.693129i
\(143\) −2046.52 717.825i −1.19678 0.419773i
\(144\) 989.554 0.572659
\(145\) 0 0
\(146\) 3571.58 2.02456
\(147\) 2265.81i 1.27130i
\(148\) 3201.04 1.77787
\(149\) 1407.22i 0.773720i −0.922138 0.386860i \(-0.873560\pi\)
0.922138 0.386860i \(-0.126440\pi\)
\(150\) 0 0
\(151\) 920.413i 0.496041i −0.968755 0.248020i \(-0.920220\pi\)
0.968755 0.248020i \(-0.0797800\pi\)
\(152\) 740.609i 0.395206i
\(153\) 364.461i 0.192581i
\(154\) 1030.65i 0.539301i
\(155\) 0 0
\(156\) −3264.09 1144.89i −1.67523 0.587593i
\(157\) 3431.29i 1.74425i 0.489285 + 0.872124i \(0.337258\pi\)
−0.489285 + 0.872124i \(0.662742\pi\)
\(158\) 1634.97 0.823233
\(159\) −5023.84 −2.50576
\(160\) 0 0
\(161\) 701.381i 0.343333i
\(162\) −3383.60 −1.64099
\(163\) −1484.20 −0.713202 −0.356601 0.934257i \(-0.616064\pi\)
−0.356601 + 0.934257i \(0.616064\pi\)
\(164\) 888.223i 0.422918i
\(165\) 0 0
\(166\) 6388.46 2.98699
\(167\) −1117.08 −0.517618 −0.258809 0.965928i \(-0.583330\pi\)
−0.258809 + 0.965928i \(0.583330\pi\)
\(168\) 365.561i 0.167879i
\(169\) −1715.64 1372.37i −0.780900 0.624656i
\(170\) 0 0
\(171\) 1851.24i 0.827882i
\(172\) 3079.37i 1.36512i
\(173\) 607.660i 0.267049i 0.991046 + 0.133525i \(0.0426295\pi\)
−0.991046 + 0.133525i \(0.957370\pi\)
\(174\) 7265.83i 3.16564i
\(175\) 0 0
\(176\) 1872.21i 0.801836i
\(177\) 2059.56 0.874609
\(178\) 6406.38i 2.69763i
\(179\) −1108.31 −0.462789 −0.231394 0.972860i \(-0.574329\pi\)
−0.231394 + 0.972860i \(0.574329\pi\)
\(180\) 0 0
\(181\) −2128.97 −0.874282 −0.437141 0.899393i \(-0.644009\pi\)
−0.437141 + 0.899393i \(0.644009\pi\)
\(182\) 345.570 985.224i 0.140744 0.401262i
\(183\) 423.554i 0.171093i
\(184\) 1317.43i 0.527840i
\(185\) 0 0
\(186\) 1996.35 0.786987
\(187\) 689.550 0.269652
\(188\) 1117.99 0.433713
\(189\) 95.0605i 0.0365853i
\(190\) 0 0
\(191\) −3817.85 −1.44634 −0.723168 0.690672i \(-0.757315\pi\)
−0.723168 + 0.690672i \(0.757315\pi\)
\(192\) 5387.09i 2.02490i
\(193\) −2166.14 −0.807888 −0.403944 0.914784i \(-0.632361\pi\)
−0.403944 + 0.914784i \(0.632361\pi\)
\(194\) 6453.33 2.38826
\(195\) 0 0
\(196\) −3249.61 −1.18426
\(197\) 2149.88 0.777528 0.388764 0.921337i \(-0.372902\pi\)
0.388764 + 0.921337i \(0.372902\pi\)
\(198\) 4839.06i 1.73685i
\(199\) −1058.52 −0.377066 −0.188533 0.982067i \(-0.560373\pi\)
−0.188533 + 0.982067i \(0.560373\pi\)
\(200\) 0 0
\(201\) 2182.79i 0.765980i
\(202\) 6668.62 2.32279
\(203\) −1233.73 −0.426556
\(204\) 1099.79 0.377455
\(205\) 0 0
\(206\) 2222.25i 0.751609i
\(207\) 3293.08i 1.10572i
\(208\) 627.739 1789.69i 0.209259 0.596599i
\(209\) 3502.50 1.15920
\(210\) 0 0
\(211\) 790.886 0.258042 0.129021 0.991642i \(-0.458817\pi\)
0.129021 + 0.991642i \(0.458817\pi\)
\(212\) 7205.15i 2.33421i
\(213\) 1967.35 0.632868
\(214\) 7179.25i 2.29329i
\(215\) 0 0
\(216\) 178.556i 0.0562463i
\(217\) 338.979i 0.106043i
\(218\) 2073.48i 0.644191i
\(219\) 5990.95i 1.84854i
\(220\) 0 0
\(221\) 659.156 + 231.201i 0.200632 + 0.0703723i
\(222\) 9544.77i 2.88560i
\(223\) 5308.17 1.59400 0.796999 0.603981i \(-0.206420\pi\)
0.796999 + 0.603981i \(0.206420\pi\)
\(224\) 1309.00 0.390452
\(225\) 0 0
\(226\) 1687.92i 0.496808i
\(227\) −2102.49 −0.614744 −0.307372 0.951589i \(-0.599450\pi\)
−0.307372 + 0.951589i \(0.599450\pi\)
\(228\) 5586.27 1.62263
\(229\) 4856.91i 1.40154i −0.713385 0.700772i \(-0.752839\pi\)
0.713385 0.700772i \(-0.247161\pi\)
\(230\) 0 0
\(231\) 1728.81 0.492414
\(232\) 2317.37 0.655788
\(233\) 3496.48i 0.983100i 0.870849 + 0.491550i \(0.163569\pi\)
−0.870849 + 0.491550i \(0.836431\pi\)
\(234\) 1622.50 4625.76i 0.453274 1.29229i
\(235\) 0 0
\(236\) 2953.80i 0.814729i
\(237\) 2742.49i 0.751661i
\(238\) 331.958i 0.0904103i
\(239\) 702.746i 0.190196i 0.995468 + 0.0950980i \(0.0303165\pi\)
−0.995468 + 0.0950980i \(0.969684\pi\)
\(240\) 0 0
\(241\) 5568.46i 1.48837i −0.667976 0.744183i \(-0.732839\pi\)
0.667976 0.744183i \(-0.267161\pi\)
\(242\) −3463.44 −0.919993
\(243\) 5182.88i 1.36824i
\(244\) 607.458 0.159379
\(245\) 0 0
\(246\) 2648.48 0.686425
\(247\) 3348.11 + 1174.36i 0.862491 + 0.302522i
\(248\) 636.718i 0.163031i
\(249\) 10716.0i 2.72730i
\(250\) 0 0
\(251\) −5277.22 −1.32707 −0.663536 0.748144i \(-0.730945\pi\)
−0.663536 + 0.748144i \(0.730945\pi\)
\(252\) 1310.51 0.327597
\(253\) −6230.42 −1.54823
\(254\) 3796.24i 0.937786i
\(255\) 0 0
\(256\) 871.464 0.212760
\(257\) 1979.47i 0.480451i 0.970717 + 0.240225i \(0.0772214\pi\)
−0.970717 + 0.240225i \(0.922779\pi\)
\(258\) 9181.98 2.21568
\(259\) −1620.69 −0.388822
\(260\) 0 0
\(261\) −5792.54 −1.37375
\(262\) 2802.99 0.660951
\(263\) 4482.39i 1.05094i −0.850813 0.525468i \(-0.823890\pi\)
0.850813 0.525468i \(-0.176110\pi\)
\(264\) −3247.31 −0.757037
\(265\) 0 0
\(266\) 1686.15i 0.388663i
\(267\) −10746.0 −2.46310
\(268\) −3130.54 −0.713538
\(269\) 4789.32 1.08554 0.542770 0.839881i \(-0.317376\pi\)
0.542770 + 0.839881i \(0.317376\pi\)
\(270\) 0 0
\(271\) 4617.30i 1.03499i −0.855687 0.517493i \(-0.826865\pi\)
0.855687 0.517493i \(-0.173135\pi\)
\(272\) 603.012i 0.134423i
\(273\) 1652.61 + 579.659i 0.366376 + 0.128508i
\(274\) −11330.2 −2.49810
\(275\) 0 0
\(276\) −9937.15 −2.16720
\(277\) 4143.04i 0.898669i −0.893364 0.449335i \(-0.851661\pi\)
0.893364 0.449335i \(-0.148339\pi\)
\(278\) −6757.01 −1.45776
\(279\) 1591.55i 0.341519i
\(280\) 0 0
\(281\) 1563.53i 0.331929i 0.986132 + 0.165965i \(0.0530737\pi\)
−0.986132 + 0.165965i \(0.946926\pi\)
\(282\) 3333.60i 0.703947i
\(283\) 5234.56i 1.09951i 0.835325 + 0.549757i \(0.185280\pi\)
−0.835325 + 0.549757i \(0.814720\pi\)
\(284\) 2821.56i 0.589539i
\(285\) 0 0
\(286\) −8751.82 3069.73i −1.80946 0.634674i
\(287\) 449.709i 0.0924929i
\(288\) 6145.93 1.25747
\(289\) 4690.91 0.954795
\(290\) 0 0
\(291\) 10824.8i 2.18062i
\(292\) 8592.18 1.72198
\(293\) 4585.84 0.914360 0.457180 0.889374i \(-0.348860\pi\)
0.457180 + 0.889374i \(0.348860\pi\)
\(294\) 9689.59i 1.92214i
\(295\) 0 0
\(296\) 3044.22 0.597775
\(297\) −844.429 −0.164979
\(298\) 6017.90i 1.16982i
\(299\) −5955.80 2089.02i −1.15195 0.404050i
\(300\) 0 0
\(301\) 1559.09i 0.298553i
\(302\) 3936.08i 0.749987i
\(303\) 11185.9i 2.12084i
\(304\) 3062.94i 0.577866i
\(305\) 0 0
\(306\) 1558.59i 0.291172i
\(307\) −249.025 −0.0462951 −0.0231476 0.999732i \(-0.507369\pi\)
−0.0231476 + 0.999732i \(0.507369\pi\)
\(308\) 2479.45i 0.458701i
\(309\) −3727.60 −0.686264
\(310\) 0 0
\(311\) −2153.58 −0.392663 −0.196331 0.980538i \(-0.562903\pi\)
−0.196331 + 0.980538i \(0.562903\pi\)
\(312\) −3104.17 1088.80i −0.563266 0.197568i
\(313\) 2176.57i 0.393057i 0.980498 + 0.196529i \(0.0629669\pi\)
−0.980498 + 0.196529i \(0.937033\pi\)
\(314\) 14673.7i 2.63721i
\(315\) 0 0
\(316\) 3933.25 0.700199
\(317\) −8235.91 −1.45923 −0.729614 0.683860i \(-0.760300\pi\)
−0.729614 + 0.683860i \(0.760300\pi\)
\(318\) −21484.1 −3.78858
\(319\) 10959.3i 1.92353i
\(320\) 0 0
\(321\) 12042.5 2.09391
\(322\) 2999.41i 0.519101i
\(323\) −1128.10 −0.194332
\(324\) −8139.95 −1.39574
\(325\) 0 0
\(326\) −6347.10 −1.07832
\(327\) 3478.05 0.588185
\(328\) 844.707i 0.142199i
\(329\) −566.042 −0.0948538
\(330\) 0 0
\(331\) 6321.70i 1.04976i 0.851175 + 0.524882i \(0.175891\pi\)
−0.851175 + 0.524882i \(0.824109\pi\)
\(332\) 15368.8 2.54058
\(333\) −7609.37 −1.25223
\(334\) −4777.12 −0.782611
\(335\) 0 0
\(336\) 1511.85i 0.245471i
\(337\) 2558.47i 0.413558i 0.978388 + 0.206779i \(0.0662981\pi\)
−0.978388 + 0.206779i \(0.933702\pi\)
\(338\) −7336.80 5868.84i −1.18068 0.944447i
\(339\) −2831.31 −0.453615
\(340\) 0 0
\(341\) 3011.17 0.478194
\(342\) 7916.69i 1.25171i
\(343\) 3431.89 0.540246
\(344\) 2928.51i 0.458996i
\(345\) 0 0
\(346\) 2598.61i 0.403764i
\(347\) 1820.72i 0.281675i 0.990033 + 0.140838i \(0.0449795\pi\)
−0.990033 + 0.140838i \(0.955020\pi\)
\(348\) 17479.5i 2.69252i
\(349\) 3806.77i 0.583873i 0.956438 + 0.291936i \(0.0942995\pi\)
−0.956438 + 0.291936i \(0.905700\pi\)
\(350\) 0 0
\(351\) −807.209 283.131i −0.122751 0.0430553i
\(352\) 11627.9i 1.76071i
\(353\) 4682.27 0.705983 0.352992 0.935626i \(-0.385164\pi\)
0.352992 + 0.935626i \(0.385164\pi\)
\(354\) 8807.55 1.32236
\(355\) 0 0
\(356\) 15411.9i 2.29446i
\(357\) −556.826 −0.0825500
\(358\) −4739.62 −0.699712
\(359\) 6697.05i 0.984560i −0.870437 0.492280i \(-0.836164\pi\)
0.870437 0.492280i \(-0.163836\pi\)
\(360\) 0 0
\(361\) 1128.92 0.164590
\(362\) −9104.38 −1.32187
\(363\) 5809.56i 0.840008i
\(364\) 831.342 2370.16i 0.119709 0.341292i
\(365\) 0 0
\(366\) 1811.30i 0.258684i
\(367\) 5163.48i 0.734418i −0.930139 0.367209i \(-0.880313\pi\)
0.930139 0.367209i \(-0.119687\pi\)
\(368\) 5448.51i 0.771802i
\(369\) 2111.44i 0.297879i
\(370\) 0 0
\(371\) 3647.98i 0.510495i
\(372\) 4802.64 0.669370
\(373\) 5394.69i 0.748864i −0.927254 0.374432i \(-0.877838\pi\)
0.927254 0.374432i \(-0.122162\pi\)
\(374\) 2948.81 0.407699
\(375\) 0 0
\(376\) 1063.22 0.145828
\(377\) −3674.58 + 10476.3i −0.501991 + 1.43118i
\(378\) 406.519i 0.0553151i
\(379\) 7982.32i 1.08186i −0.841068 0.540929i \(-0.818073\pi\)
0.841068 0.540929i \(-0.181927\pi\)
\(380\) 0 0
\(381\) 6367.81 0.856254
\(382\) −16326.8 −2.18678
\(383\) −4886.18 −0.651886 −0.325943 0.945389i \(-0.605682\pi\)
−0.325943 + 0.945389i \(0.605682\pi\)
\(384\) 8615.95i 1.14500i
\(385\) 0 0
\(386\) −9263.36 −1.22148
\(387\) 7320.15i 0.961509i
\(388\) 15524.9 2.03133
\(389\) 3376.51 0.440092 0.220046 0.975490i \(-0.429379\pi\)
0.220046 + 0.975490i \(0.429379\pi\)
\(390\) 0 0
\(391\) 2006.73 0.259552
\(392\) −3090.41 −0.398187
\(393\) 4701.72i 0.603487i
\(394\) 9193.83 1.17558
\(395\) 0 0
\(396\) 11641.4i 1.47727i
\(397\) −4446.60 −0.562137 −0.281069 0.959688i \(-0.590689\pi\)
−0.281069 + 0.959688i \(0.590689\pi\)
\(398\) −4526.67 −0.570104
\(399\) −2828.34 −0.354872
\(400\) 0 0
\(401\) 4546.80i 0.566225i 0.959087 + 0.283113i \(0.0913670\pi\)
−0.959087 + 0.283113i \(0.908633\pi\)
\(402\) 9334.54i 1.15812i
\(403\) 2878.45 + 1009.62i 0.355796 + 0.124797i
\(404\) 16042.8 1.97564
\(405\) 0 0
\(406\) −5275.96 −0.644930
\(407\) 14396.7i 1.75337i
\(408\) 1045.91 0.126912
\(409\) 2879.96i 0.348179i −0.984730 0.174089i \(-0.944302\pi\)
0.984730 0.174089i \(-0.0556982\pi\)
\(410\) 0 0
\(411\) 19005.2i 2.28092i
\(412\) 5346.09i 0.639279i
\(413\) 1495.51i 0.178183i
\(414\) 14082.6i 1.67180i
\(415\) 0 0
\(416\) 3898.76 11115.4i 0.459502 1.31004i
\(417\) 11334.2i 1.33103i
\(418\) 14978.2 1.75265
\(419\) 4060.33 0.473413 0.236706 0.971581i \(-0.423932\pi\)
0.236706 + 0.971581i \(0.423932\pi\)
\(420\) 0 0
\(421\) 6882.42i 0.796743i 0.917224 + 0.398371i \(0.130424\pi\)
−0.917224 + 0.398371i \(0.869576\pi\)
\(422\) 3382.17 0.390145
\(423\) −2657.65 −0.305483
\(424\) 6852.15i 0.784835i
\(425\) 0 0
\(426\) 8413.25 0.956862
\(427\) −307.557 −0.0348565
\(428\) 17271.2i 1.95055i
\(429\) 5149.15 14680.3i 0.579495 1.65215i
\(430\) 0 0
\(431\) 8472.47i 0.946878i −0.880827 0.473439i \(-0.843012\pi\)
0.880827 0.473439i \(-0.156988\pi\)
\(432\) 738.454i 0.0822428i
\(433\) 5762.31i 0.639536i 0.947496 + 0.319768i \(0.103605\pi\)
−0.947496 + 0.319768i \(0.896395\pi\)
\(434\) 1449.62i 0.160332i
\(435\) 0 0
\(436\) 4988.19i 0.547915i
\(437\) 10193.0 1.11578
\(438\) 25619.9i 2.79490i
\(439\) 4537.20 0.493277 0.246638 0.969108i \(-0.420674\pi\)
0.246638 + 0.969108i \(0.420674\pi\)
\(440\) 0 0
\(441\) 7724.83 0.834125
\(442\) 2818.83 + 988.715i 0.303345 + 0.106399i
\(443\) 4500.12i 0.482635i −0.970446 0.241317i \(-0.922421\pi\)
0.970446 0.241317i \(-0.0775795\pi\)
\(444\) 22961.9i 2.45434i
\(445\) 0 0
\(446\) 22700.0 2.41004
\(447\) 10094.4 1.06812
\(448\) 3911.75 0.412529
\(449\) 526.576i 0.0553467i 0.999617 + 0.0276733i \(0.00880983\pi\)
−0.999617 + 0.0276733i \(0.991190\pi\)
\(450\) 0 0
\(451\) 3994.80 0.417090
\(452\) 4060.64i 0.422559i
\(453\) 6602.37 0.684783
\(454\) −8991.13 −0.929460
\(455\) 0 0
\(456\) 5312.59 0.545581
\(457\) 4385.91 0.448937 0.224468 0.974481i \(-0.427935\pi\)
0.224468 + 0.974481i \(0.427935\pi\)
\(458\) 20770.2i 2.11906i
\(459\) 271.979 0.0276577
\(460\) 0 0
\(461\) 3356.95i 0.339151i −0.985517 0.169576i \(-0.945760\pi\)
0.985517 0.169576i \(-0.0542397\pi\)
\(462\) 7393.15 0.744503
\(463\) −16274.1 −1.63353 −0.816764 0.576972i \(-0.804234\pi\)
−0.816764 + 0.576972i \(0.804234\pi\)
\(464\) −9583.94 −0.958886
\(465\) 0 0
\(466\) 14952.5i 1.48639i
\(467\) 9804.73i 0.971539i −0.874087 0.485770i \(-0.838539\pi\)
0.874087 0.485770i \(-0.161461\pi\)
\(468\) 3903.27 11128.2i 0.385531 1.09915i
\(469\) 1585.00 0.156052
\(470\) 0 0
\(471\) −24613.6 −2.40793
\(472\) 2809.09i 0.273938i
\(473\) 13849.5 1.34630
\(474\) 11728.0i 1.13647i
\(475\) 0 0
\(476\) 798.596i 0.0768982i
\(477\) 17127.8i 1.64408i
\(478\) 3005.24i 0.287566i
\(479\) 16881.6i 1.61032i 0.593061 + 0.805158i \(0.297919\pi\)
−0.593061 + 0.805158i \(0.702081\pi\)
\(480\) 0 0
\(481\) −4827.12 + 13762.2i −0.457584 + 1.30457i
\(482\) 23813.1i 2.25033i
\(483\) 5031.20 0.473970
\(484\) −8332.03 −0.782497
\(485\) 0 0
\(486\) 22164.2i 2.06870i
\(487\) −1364.91 −0.127002 −0.0635009 0.997982i \(-0.520227\pi\)
−0.0635009 + 0.997982i \(0.520227\pi\)
\(488\) 577.698 0.0535884
\(489\) 10646.6i 0.984573i
\(490\) 0 0
\(491\) 6981.50 0.641692 0.320846 0.947131i \(-0.396033\pi\)
0.320846 + 0.947131i \(0.396033\pi\)
\(492\) 6371.46 0.583837
\(493\) 3529.84i 0.322467i
\(494\) 14318.0 + 5022.07i 1.30404 + 0.457396i
\(495\) 0 0
\(496\) 2633.27i 0.238382i
\(497\) 1428.56i 0.128933i
\(498\) 45826.2i 4.12353i
\(499\) 4600.22i 0.412694i 0.978479 + 0.206347i \(0.0661575\pi\)
−0.978479 + 0.206347i \(0.933842\pi\)
\(500\) 0 0
\(501\) 8013.12i 0.714571i
\(502\) −22567.7 −2.00646
\(503\) 4447.14i 0.394211i −0.980382 0.197106i \(-0.936846\pi\)
0.980382 0.197106i \(-0.0631542\pi\)
\(504\) 1246.31 0.110149
\(505\) 0 0
\(506\) −26644.0 −2.34085
\(507\) 9844.38 12306.7i 0.862336 1.07803i
\(508\) 9132.66i 0.797631i
\(509\) 12304.7i 1.07150i −0.844375 0.535752i \(-0.820028\pi\)
0.844375 0.535752i \(-0.179972\pi\)
\(510\) 0 0
\(511\) −4350.23 −0.376601
\(512\) 13335.7 1.15109
\(513\) 1381.49 0.118897
\(514\) 8465.06i 0.726416i
\(515\) 0 0
\(516\) 22089.2 1.88454
\(517\) 5028.20i 0.427737i
\(518\) −6930.78 −0.587878
\(519\) −4358.91 −0.368660
\(520\) 0 0
\(521\) 21956.8 1.84634 0.923172 0.384388i \(-0.125587\pi\)
0.923172 + 0.384388i \(0.125587\pi\)
\(522\) −24771.4 −2.07704
\(523\) 9329.17i 0.779993i 0.920816 + 0.389996i \(0.127524\pi\)
−0.920816 + 0.389996i \(0.872476\pi\)
\(524\) 6743.17 0.562169
\(525\) 0 0
\(526\) 19168.6i 1.58896i
\(527\) −969.855 −0.0801662
\(528\) 13429.9 1.10693
\(529\) −5964.78 −0.490242
\(530\) 0 0
\(531\) 7021.64i 0.573848i
\(532\) 4056.38i 0.330576i
\(533\) 3818.71 + 1339.43i 0.310332 + 0.108850i
\(534\) −45954.7 −3.72407
\(535\) 0 0
\(536\) −2977.17 −0.239914
\(537\) 7950.23i 0.638879i
\(538\) 20481.2 1.64128
\(539\) 14615.2i 1.16794i
\(540\) 0 0
\(541\) 14190.9i 1.12776i −0.825858 0.563878i \(-0.809309\pi\)
0.825858 0.563878i \(-0.190691\pi\)
\(542\) 19745.6i 1.56484i
\(543\) 15271.7i 1.20694i
\(544\) 3745.19i 0.295172i
\(545\) 0 0
\(546\) 7067.28 + 2478.87i 0.553941 + 0.194296i
\(547\) 6080.89i 0.475320i 0.971348 + 0.237660i \(0.0763804\pi\)
−0.971348 + 0.237660i \(0.923620\pi\)
\(548\) −27257.1 −2.12475
\(549\) −1444.02 −0.112258
\(550\) 0 0
\(551\) 17929.5i 1.38624i
\(552\) −9450.31 −0.728681
\(553\) −1991.41 −0.153135
\(554\) 17717.4i 1.35874i
\(555\) 0 0
\(556\) −16255.4 −1.23990
\(557\) −4547.90 −0.345962 −0.172981 0.984925i \(-0.555340\pi\)
−0.172981 + 0.984925i \(0.555340\pi\)
\(558\) 6806.16i 0.516358i
\(559\) 13239.1 + 4643.65i 1.00170 + 0.351351i
\(560\) 0 0
\(561\) 4946.33i 0.372253i
\(562\) 6686.31i 0.501859i
\(563\) 8486.35i 0.635270i −0.948213 0.317635i \(-0.897111\pi\)
0.948213 0.317635i \(-0.102889\pi\)
\(564\) 8019.68i 0.598740i
\(565\) 0 0
\(566\) 22385.2i 1.66241i
\(567\) 4121.27 0.305251
\(568\) 2683.33i 0.198222i
\(569\) 11315.7 0.833706 0.416853 0.908974i \(-0.363133\pi\)
0.416853 + 0.908974i \(0.363133\pi\)
\(570\) 0 0
\(571\) −10804.4 −0.791855 −0.395927 0.918282i \(-0.629577\pi\)
−0.395927 + 0.918282i \(0.629577\pi\)
\(572\) −21054.3 7384.88i −1.53903 0.539820i
\(573\) 27386.5i 1.99666i
\(574\) 1923.15i 0.139844i
\(575\) 0 0
\(576\) 18366.2 1.32857
\(577\) −16319.8 −1.17747 −0.588735 0.808326i \(-0.700374\pi\)
−0.588735 + 0.808326i \(0.700374\pi\)
\(578\) 20060.3 1.44360
\(579\) 15538.3i 1.11529i
\(580\) 0 0
\(581\) −7781.24 −0.555628
\(582\) 46291.5i 3.29698i
\(583\) −32405.3 −2.30204
\(584\) 8171.23 0.578986
\(585\) 0 0
\(586\) 19611.0 1.38246
\(587\) 25355.3 1.78284 0.891420 0.453179i \(-0.149710\pi\)
0.891420 + 0.453179i \(0.149710\pi\)
\(588\) 23310.3i 1.63487i
\(589\) −4926.28 −0.344624
\(590\) 0 0
\(591\) 15421.7i 1.07337i
\(592\) −12590.0 −0.874061
\(593\) 6158.04 0.426442 0.213221 0.977004i \(-0.431605\pi\)
0.213221 + 0.977004i \(0.431605\pi\)
\(594\) −3611.14 −0.249439
\(595\) 0 0
\(596\) 14477.3i 0.994990i
\(597\) 7593.02i 0.520539i
\(598\) −25469.6 8933.53i −1.74168 0.610902i
\(599\) 23375.4 1.59448 0.797239 0.603664i \(-0.206293\pi\)
0.797239 + 0.603664i \(0.206293\pi\)
\(600\) 0 0
\(601\) 4871.29 0.330622 0.165311 0.986241i \(-0.447137\pi\)
0.165311 + 0.986241i \(0.447137\pi\)
\(602\) 6667.34i 0.451396i
\(603\) 7441.78 0.502575
\(604\) 9469.07i 0.637899i
\(605\) 0 0
\(606\) 47835.8i 3.20660i
\(607\) 9476.94i 0.633702i 0.948475 + 0.316851i \(0.102626\pi\)
−0.948475 + 0.316851i \(0.897374\pi\)
\(608\) 19023.3i 1.26891i
\(609\) 8849.89i 0.588860i
\(610\) 0 0
\(611\) −1685.92 + 4806.56i −0.111628 + 0.318253i
\(612\) 3749.52i 0.247656i
\(613\) −25884.6 −1.70550 −0.852749 0.522322i \(-0.825066\pi\)
−0.852749 + 0.522322i \(0.825066\pi\)
\(614\) −1064.94 −0.0699958
\(615\) 0 0
\(616\) 2357.98i 0.154230i
\(617\) 18011.5 1.17523 0.587614 0.809142i \(-0.300068\pi\)
0.587614 + 0.809142i \(0.300068\pi\)
\(618\) −15940.8 −1.03759
\(619\) 9237.91i 0.599843i 0.953964 + 0.299922i \(0.0969606\pi\)
−0.953964 + 0.299922i \(0.903039\pi\)
\(620\) 0 0
\(621\) −2457.46 −0.158799
\(622\) −9209.62 −0.593685
\(623\) 7803.06i 0.501803i
\(624\) 12837.9 + 4502.94i 0.823602 + 0.288881i
\(625\) 0 0
\(626\) 9307.95i 0.594282i
\(627\) 25124.3i 1.60027i
\(628\) 35300.6i 2.24307i
\(629\) 4636.98i 0.293940i
\(630\) 0 0
\(631\) 26136.5i 1.64893i 0.565910 + 0.824467i \(0.308525\pi\)
−0.565910 + 0.824467i \(0.691475\pi\)
\(632\) 3740.55 0.235429
\(633\) 5673.24i 0.356226i
\(634\) −35220.3 −2.20627
\(635\) 0 0
\(636\) −51684.5 −3.22236
\(637\) 4900.36 13971.0i 0.304803 0.868995i
\(638\) 46866.8i 2.90827i
\(639\) 6707.29i 0.415237i
\(640\) 0 0
\(641\) 25457.6 1.56866 0.784332 0.620341i \(-0.213006\pi\)
0.784332 + 0.620341i \(0.213006\pi\)
\(642\) 51498.7 3.16588
\(643\) 24461.2 1.50024 0.750122 0.661299i \(-0.229995\pi\)
0.750122 + 0.661299i \(0.229995\pi\)
\(644\) 7215.70i 0.441519i
\(645\) 0 0
\(646\) −4824.25 −0.293820
\(647\) 14409.2i 0.875552i −0.899084 0.437776i \(-0.855766\pi\)
0.899084 0.437776i \(-0.144234\pi\)
\(648\) −7741.16 −0.469293
\(649\) 13284.8 0.803501
\(650\) 0 0
\(651\) −2431.59 −0.146392
\(652\) −15269.3 −0.917164
\(653\) 30117.4i 1.80487i −0.430821 0.902437i \(-0.641776\pi\)
0.430821 0.902437i \(-0.358224\pi\)
\(654\) 14873.6 0.889304
\(655\) 0 0
\(656\) 3493.45i 0.207921i
\(657\) −20424.9 −1.21287
\(658\) −2420.64 −0.143414
\(659\) 20622.9 1.21905 0.609524 0.792767i \(-0.291361\pi\)
0.609524 + 0.792767i \(0.291361\pi\)
\(660\) 0 0
\(661\) 6169.23i 0.363019i −0.983389 0.181509i \(-0.941902\pi\)
0.983389 0.181509i \(-0.0580983\pi\)
\(662\) 27034.3i 1.58719i
\(663\) −1658.47 + 4728.30i −0.0971487 + 0.276972i
\(664\) 14615.8 0.854224
\(665\) 0 0
\(666\) −32541.0 −1.89330
\(667\) 31893.8i 1.85148i
\(668\) −11492.4 −0.665648
\(669\) 38077.0i 2.20051i
\(670\) 0 0
\(671\) 2732.05i 0.157183i
\(672\) 9389.80i 0.539017i
\(673\) 18705.5i 1.07139i 0.844413 + 0.535693i \(0.179949\pi\)
−0.844413 + 0.535693i \(0.820051\pi\)
\(674\) 10941.1i 0.625277i
\(675\) 0 0
\(676\) −17650.2 14118.7i −1.00422 0.803296i
\(677\) 13999.6i 0.794752i −0.917656 0.397376i \(-0.869921\pi\)
0.917656 0.397376i \(-0.130079\pi\)
\(678\) −12107.9 −0.685842
\(679\) −7860.26 −0.444255
\(680\) 0 0
\(681\) 15081.7i 0.848652i
\(682\) 12877.1 0.723004
\(683\) −26701.3 −1.49590 −0.747949 0.663756i \(-0.768961\pi\)
−0.747949 + 0.663756i \(0.768961\pi\)
\(684\) 19045.3i 1.06464i
\(685\) 0 0
\(686\) 14676.2 0.816823
\(687\) 34839.9 1.93483
\(688\) 12111.4i 0.671139i
\(689\) −30976.9 10865.3i −1.71281 0.600774i
\(690\) 0 0
\(691\) 30797.3i 1.69549i 0.530405 + 0.847745i \(0.322040\pi\)
−0.530405 + 0.847745i \(0.677960\pi\)
\(692\) 6251.51i 0.343420i
\(693\) 5894.04i 0.323082i
\(694\) 7786.17i 0.425878i
\(695\) 0 0
\(696\) 16623.1i 0.905313i
\(697\) −1286.67 −0.0699225
\(698\) 16279.4i 0.882784i
\(699\) −25081.2 −1.35717
\(700\) 0 0
\(701\) −1914.30 −0.103141 −0.0515707 0.998669i \(-0.516423\pi\)
−0.0515707 + 0.998669i \(0.516423\pi\)
\(702\) −3451.97 1210.79i −0.185593 0.0650973i
\(703\) 23553.1i 1.26361i
\(704\) 34748.4i 1.86027i
\(705\) 0 0
\(706\) 20023.4 1.06741
\(707\) −8122.48 −0.432075
\(708\) 21188.4 1.12473
\(709\) 119.977i 0.00635520i −0.999995 0.00317760i \(-0.998989\pi\)
0.999995 0.00317760i \(-0.00101146\pi\)
\(710\) 0 0
\(711\) −9349.95 −0.493179
\(712\) 14656.8i 0.771472i
\(713\) 8763.12 0.460282
\(714\) −2381.23 −0.124811
\(715\) 0 0
\(716\) −11402.2 −0.595138
\(717\) −5040.99 −0.262565
\(718\) 28639.5i 1.48860i
\(719\) −6043.22 −0.313455 −0.156727 0.987642i \(-0.550094\pi\)
−0.156727 + 0.987642i \(0.550094\pi\)
\(720\) 0 0
\(721\) 2706.73i 0.139811i
\(722\) 4827.75 0.248851
\(723\) 39944.1 2.05468
\(724\) −21902.5 −1.12431
\(725\) 0 0
\(726\) 24844.2i 1.27005i
\(727\) 27917.4i 1.42421i 0.702074 + 0.712104i \(0.252257\pi\)
−0.702074 + 0.712104i \(0.747743\pi\)
\(728\) 790.613 2254.04i 0.0402501 0.114753i
\(729\) 15815.3 0.803499
\(730\) 0 0
\(731\) −4460.73 −0.225699
\(732\) 4357.46i 0.220023i
\(733\) −10871.2 −0.547801 −0.273900 0.961758i \(-0.588314\pi\)
−0.273900 + 0.961758i \(0.588314\pi\)
\(734\) 22081.2i 1.11040i
\(735\) 0 0
\(736\) 33839.6i 1.69476i
\(737\) 14079.6i 0.703705i
\(738\) 9029.44i 0.450377i
\(739\) 76.7079i 0.00381833i −0.999998 0.00190916i \(-0.999392\pi\)
0.999998 0.00190916i \(-0.000607706\pi\)
\(740\) 0 0
\(741\) −8424.01 + 24016.9i −0.417630 + 1.19067i
\(742\) 15600.3i 0.771840i
\(743\) 29467.6 1.45499 0.727497 0.686111i \(-0.240684\pi\)
0.727497 + 0.686111i \(0.240684\pi\)
\(744\) 4567.35 0.225064
\(745\) 0 0
\(746\) 23070.0i 1.13224i
\(747\) −36534.0 −1.78944
\(748\) 7093.99 0.346767
\(749\) 8744.44i 0.426588i
\(750\) 0 0
\(751\) −37540.9 −1.82409 −0.912043 0.410095i \(-0.865495\pi\)
−0.912043 + 0.410095i \(0.865495\pi\)
\(752\) −4397.16 −0.213229
\(753\) 37854.9i 1.83202i
\(754\) −15714.1 + 44801.0i −0.758984 + 2.16387i
\(755\) 0 0
\(756\) 977.968i 0.0470481i
\(757\) 15276.6i 0.733472i −0.930325 0.366736i \(-0.880475\pi\)
0.930325 0.366736i \(-0.119525\pi\)
\(758\) 34135.8i 1.63571i
\(759\) 44692.5i 2.13733i
\(760\) 0 0
\(761\) 28942.6i 1.37867i −0.724441 0.689336i \(-0.757902\pi\)
0.724441 0.689336i \(-0.242098\pi\)
\(762\) 27231.5 1.29461
\(763\) 2525.53i 0.119830i
\(764\) −39277.5 −1.85996
\(765\) 0 0
\(766\) −20895.4 −0.985617
\(767\) 12699.2 + 4454.28i 0.597837 + 0.209693i
\(768\) 6251.25i 0.293714i
\(769\) 19643.6i 0.921151i −0.887621 0.460575i \(-0.847643\pi\)
0.887621 0.460575i \(-0.152357\pi\)
\(770\) 0 0
\(771\) −14199.3 −0.663261
\(772\) −22285.0 −1.03893
\(773\) −4746.94 −0.220874 −0.110437 0.993883i \(-0.535225\pi\)
−0.110437 + 0.993883i \(0.535225\pi\)
\(774\) 31304.1i 1.45375i
\(775\) 0 0
\(776\) 14764.3 0.682997
\(777\) 11625.7i 0.536768i
\(778\) 14439.4 0.665395
\(779\) −6535.48 −0.300588
\(780\) 0 0
\(781\) 12690.0 0.581415
\(782\) 8581.63 0.392428
\(783\) 4322.68i 0.197292i
\(784\) 12781.0 0.582224
\(785\) 0 0
\(786\) 20106.6i 0.912440i
\(787\) −7895.28 −0.357606 −0.178803 0.983885i \(-0.557223\pi\)
−0.178803 + 0.983885i \(0.557223\pi\)
\(788\) 22117.7 0.999886
\(789\) 32153.4 1.45081
\(790\) 0 0
\(791\) 2055.91i 0.0924143i
\(792\) 11071.0i 0.496707i
\(793\) −916.038 + 2611.63i −0.0410208 + 0.116950i
\(794\) −19015.6 −0.849921
\(795\) 0 0
\(796\) −10889.9 −0.484900
\(797\) 36729.0i 1.63238i −0.577784 0.816190i \(-0.696082\pi\)
0.577784 0.816190i \(-0.303918\pi\)
\(798\) −12095.2 −0.536548
\(799\) 1619.51i 0.0717073i
\(800\) 0 0
\(801\) 36636.4i 1.61609i
\(802\) 19444.1i 0.856102i
\(803\) 38643.4i 1.69825i
\(804\) 22456.2i 0.985036i
\(805\) 0 0
\(806\) 12309.5 + 4317.59i 0.537944 + 0.188686i
\(807\) 34355.1i 1.49858i
\(808\) 15256.8 0.664273
\(809\) 2008.18 0.0872729 0.0436364 0.999047i \(-0.486106\pi\)
0.0436364 + 0.999047i \(0.486106\pi\)
\(810\) 0 0
\(811\) 2740.69i 0.118667i −0.998238 0.0593334i \(-0.981103\pi\)
0.998238 0.0593334i \(-0.0188975\pi\)
\(812\) −12692.4 −0.548543
\(813\) 33121.2 1.42880
\(814\) 61566.6i 2.65099i
\(815\) 0 0
\(816\) −4325.57 −0.185570
\(817\) −22657.8 −0.970253
\(818\) 12316.0i 0.526427i
\(819\) −1976.23 + 5634.24i −0.0843163 + 0.240386i
\(820\) 0 0
\(821\) 19064.1i 0.810405i −0.914227 0.405203i \(-0.867201\pi\)
0.914227 0.405203i \(-0.132799\pi\)
\(822\) 81274.3i 3.44862i
\(823\) 31210.5i 1.32191i 0.750426 + 0.660954i \(0.229848\pi\)
−0.750426 + 0.660954i \(0.770152\pi\)
\(824\) 5084.18i 0.214946i
\(825\) 0 0
\(826\) 6395.46i 0.269402i
\(827\) −19946.2 −0.838691 −0.419346 0.907827i \(-0.637740\pi\)
−0.419346 + 0.907827i \(0.637740\pi\)
\(828\) 33878.7i 1.42194i
\(829\) 26129.2 1.09470 0.547348 0.836905i \(-0.315637\pi\)
0.547348 + 0.836905i \(0.315637\pi\)
\(830\) 0 0
\(831\) 29719.2 1.24061
\(832\) 11650.9 33216.7i 0.485483 1.38411i
\(833\) 4707.34i 0.195798i
\(834\) 48469.9i 2.01244i
\(835\) 0 0
\(836\) 36033.1 1.49071
\(837\) 1187.69 0.0490475
\(838\) 17363.7 0.715775
\(839\) 19645.3i 0.808381i −0.914675 0.404190i \(-0.867553\pi\)
0.914675 0.404190i \(-0.132447\pi\)
\(840\) 0 0
\(841\) 31712.3 1.30027
\(842\) 29432.2i 1.20463i
\(843\) −11215.6 −0.458227
\(844\) 8136.51 0.331837
\(845\) 0 0
\(846\) −11365.2 −0.461873
\(847\) 4218.52 0.171133
\(848\) 28338.4i 1.14758i
\(849\) −37548.9 −1.51788
\(850\) 0 0
\(851\) 41897.4i 1.68769i
\(852\) 20239.8 0.813856
\(853\) −22236.4 −0.892567 −0.446283 0.894892i \(-0.647253\pi\)
−0.446283 + 0.894892i \(0.647253\pi\)
\(854\) −1315.25 −0.0527012
\(855\) 0 0
\(856\) 16425.1i 0.655837i
\(857\) 9147.58i 0.364615i 0.983242 + 0.182308i \(0.0583567\pi\)
−0.983242 + 0.182308i \(0.941643\pi\)
\(858\) 22020.0 62779.2i 0.876166 2.49796i
\(859\) 25810.6 1.02520 0.512599 0.858628i \(-0.328683\pi\)
0.512599 + 0.858628i \(0.328683\pi\)
\(860\) 0 0
\(861\) −3225.88 −0.127686
\(862\) 36231.9i 1.43163i
\(863\) −40079.9 −1.58092 −0.790461 0.612512i \(-0.790159\pi\)
−0.790461 + 0.612512i \(0.790159\pi\)
\(864\) 4586.40i 0.180593i
\(865\) 0 0
\(866\) 24642.1i 0.966943i
\(867\) 33649.1i 1.31809i
\(868\) 3487.36i 0.136370i
\(869\) 17689.9i 0.690549i
\(870\) 0 0
\(871\) 4720.80 13459.0i 0.183649 0.523585i
\(872\) 4743.81i 0.184227i
\(873\) −36905.0 −1.43075
\(874\) 43589.5 1.68700
\(875\) 0 0
\(876\) 61634.0i 2.37719i
\(877\) 28881.1 1.11202 0.556012 0.831174i \(-0.312331\pi\)
0.556012 + 0.831174i \(0.312331\pi\)
\(878\) 19403.0 0.745808
\(879\) 32895.5i 1.26227i
\(880\) 0 0
\(881\) 30201.1 1.15494 0.577470 0.816412i \(-0.304040\pi\)
0.577470 + 0.816412i \(0.304040\pi\)
\(882\) 33034.7 1.26115
\(883\) 27307.5i 1.04074i −0.853942 0.520369i \(-0.825795\pi\)
0.853942 0.520369i \(-0.174205\pi\)
\(884\) 6781.30 + 2378.56i 0.258009 + 0.0904974i
\(885\) 0 0
\(886\) 19244.5i 0.729718i
\(887\) 7353.93i 0.278378i 0.990266 + 0.139189i \(0.0444495\pi\)
−0.990266 + 0.139189i \(0.955551\pi\)
\(888\) 21837.0i 0.825227i
\(889\) 4623.88i 0.174443i
\(890\) 0 0
\(891\) 36609.6i 1.37651i
\(892\) 54609.7 2.04985
\(893\) 8226.13i 0.308261i
\(894\) 43168.0 1.61494
\(895\) 0 0
\(896\) 6256.33 0.233269
\(897\) 14985.1 42722.6i 0.557789 1.59026i
\(898\) 2251.87i 0.0836812i
\(899\) 15414.3i 0.571855i
\(900\) 0 0
\(901\) 10437.3 0.385922
\(902\) 17083.5 0.630618
\(903\) −11183.8 −0.412152
\(904\) 3861.70i 0.142078i
\(905\) 0 0
\(906\) 28234.6 1.03535
\(907\) 20414.7i 0.747365i 0.927557 + 0.373682i \(0.121905\pi\)
−0.927557 + 0.373682i \(0.878095\pi\)
\(908\) −21630.1 −0.790549
\(909\) −38136.2 −1.39153
\(910\) 0 0
\(911\) −12721.2 −0.462649 −0.231325 0.972877i \(-0.574306\pi\)
−0.231325 + 0.972877i \(0.574306\pi\)
\(912\) −21971.3 −0.797743
\(913\) 69121.3i 2.50557i
\(914\) 18756.0 0.678768
\(915\) 0 0
\(916\) 49967.2i 1.80236i
\(917\) −3414.08 −0.122947
\(918\) 1163.10 0.0418169
\(919\) 18000.9 0.646130 0.323065 0.946377i \(-0.395287\pi\)
0.323065 + 0.946377i \(0.395287\pi\)
\(920\) 0 0
\(921\) 1786.32i 0.0639103i
\(922\) 14355.7i 0.512778i
\(923\) 12130.7 + 4254.87i 0.432596 + 0.151734i
\(924\) 17785.8 0.633235
\(925\) 0 0
\(926\) −69595.2 −2.46981
\(927\) 12708.5i 0.450271i
\(928\) −59524.0 −2.10557
\(929\) 40583.7i 1.43327i 0.697448 + 0.716635i \(0.254319\pi\)
−0.697448 + 0.716635i \(0.745681\pi\)
\(930\) 0 0
\(931\) 23910.4i 0.841710i
\(932\) 35971.3i 1.26425i
\(933\) 15448.2i 0.542070i
\(934\) 41929.2i 1.46892i
\(935\) 0 0
\(936\) 3712.04 10583.0i 0.129628 0.369570i
\(937\) 17375.4i 0.605796i 0.953023 + 0.302898i \(0.0979541\pi\)
−0.953023 + 0.302898i \(0.902046\pi\)
\(938\) 6778.13 0.235942
\(939\) −15613.1 −0.542615
\(940\) 0 0
\(941\) 14332.7i 0.496527i 0.968693 + 0.248264i \(0.0798599\pi\)
−0.968693 + 0.248264i \(0.920140\pi\)
\(942\) −105258. −3.64066
\(943\) 11625.7 0.401467
\(944\) 11617.5i 0.400549i
\(945\) 0 0
\(946\) 59226.5 2.03554
\(947\) 28957.6 0.993658 0.496829 0.867848i \(-0.334498\pi\)
0.496829 + 0.867848i \(0.334498\pi\)
\(948\) 28214.3i 0.966622i
\(949\) −12956.9 + 36940.1i −0.443201 + 1.26357i
\(950\) 0 0
\(951\) 59078.4i 2.01446i
\(952\) 759.471i 0.0258557i
\(953\) 34079.5i 1.15839i 0.815190 + 0.579194i \(0.196633\pi\)
−0.815190 + 0.579194i \(0.803367\pi\)
\(954\) 73245.6i 2.48576i
\(955\) 0 0
\(956\) 7229.74i 0.244589i
\(957\) −78614.2 −2.65542
\(958\) 72193.1i 2.43471i
\(959\) 13800.3 0.464687
\(960\) 0 0
\(961\) 25555.8 0.857835
\(962\) −20642.8 + 58852.9i −0.691842 + 1.97245i
\(963\) 41056.3i 1.37385i
\(964\) 57287.5i 1.91401i
\(965\) 0 0
\(966\) 21515.6 0.716617
\(967\) −51382.9 −1.70875 −0.854377 0.519654i \(-0.826061\pi\)
−0.854377 + 0.519654i \(0.826061\pi\)
\(968\) −7923.83 −0.263101
\(969\) 8092.19i 0.268275i
\(970\) 0 0
\(971\) −24450.8 −0.808097 −0.404049 0.914737i \(-0.632397\pi\)
−0.404049 + 0.914737i \(0.632397\pi\)
\(972\) 53320.7i 1.75953i
\(973\) 8230.14 0.271168
\(974\) −5836.93 −0.192020
\(975\) 0 0
\(976\) −2389.18 −0.0783564
\(977\) −28371.3 −0.929047 −0.464523 0.885561i \(-0.653774\pi\)
−0.464523 + 0.885561i \(0.653774\pi\)
\(978\) 45529.4i 1.48862i
\(979\) −69315.2 −2.26284
\(980\) 0 0
\(981\) 11857.7i 0.385920i
\(982\) 29855.9 0.970204
\(983\) 47296.1 1.53460 0.767300 0.641288i \(-0.221600\pi\)
0.767300 + 0.641288i \(0.221600\pi\)
\(984\) 6059.31 0.196305
\(985\) 0 0
\(986\) 15095.1i 0.487552i
\(987\) 4060.37i 0.130945i
\(988\) 34444.9 + 12081.7i 1.10915 + 0.389037i
\(989\) 40304.9 1.29588
\(990\) 0 0
\(991\) 16241.7 0.520620 0.260310 0.965525i \(-0.416175\pi\)
0.260310 + 0.965525i \(0.416175\pi\)
\(992\) 16354.8i 0.523452i
\(993\) −45347.3 −1.44920
\(994\) 6109.14i 0.194940i
\(995\) 0 0
\(996\) 110244.i 3.50726i
\(997\) 1249.79i 0.0397004i −0.999803 0.0198502i \(-0.993681\pi\)
0.999803 0.0198502i \(-0.00631894\pi\)
\(998\) 19672.5i 0.623971i
\(999\) 5678.49i 0.179839i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.4.d.c.324.12 14
5.2 odd 4 325.4.c.e.51.12 14
5.3 odd 4 65.4.c.a.51.3 14
5.4 even 2 325.4.d.d.324.3 14
13.12 even 2 325.4.d.d.324.4 14
15.8 even 4 585.4.b.e.181.12 14
20.3 even 4 1040.4.k.d.961.12 14
65.8 even 4 845.4.a.i.1.6 7
65.12 odd 4 325.4.c.e.51.3 14
65.18 even 4 845.4.a.l.1.2 7
65.38 odd 4 65.4.c.a.51.12 yes 14
65.64 even 2 inner 325.4.d.c.324.11 14
195.38 even 4 585.4.b.e.181.3 14
260.103 even 4 1040.4.k.d.961.11 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.4.c.a.51.3 14 5.3 odd 4
65.4.c.a.51.12 yes 14 65.38 odd 4
325.4.c.e.51.3 14 65.12 odd 4
325.4.c.e.51.12 14 5.2 odd 4
325.4.d.c.324.11 14 65.64 even 2 inner
325.4.d.c.324.12 14 1.1 even 1 trivial
325.4.d.d.324.3 14 5.4 even 2
325.4.d.d.324.4 14 13.12 even 2
585.4.b.e.181.3 14 195.38 even 4
585.4.b.e.181.12 14 15.8 even 4
845.4.a.i.1.6 7 65.8 even 4
845.4.a.l.1.2 7 65.18 even 4
1040.4.k.d.961.11 14 260.103 even 4
1040.4.k.d.961.12 14 20.3 even 4