L(s) = 1 | − 2·3-s − 2·4-s − 4·5-s − 4·7-s + 3·9-s + 4·12-s − 2·13-s + 8·15-s + 8·17-s − 2·19-s + 8·20-s + 8·21-s − 4·23-s + 4·25-s − 4·27-s + 8·28-s − 4·29-s + 16·35-s − 6·36-s + 2·37-s + 4·39-s + 6·43-s − 12·45-s + 4·47-s + 6·49-s − 16·51-s + 4·52-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 4-s − 1.78·5-s − 1.51·7-s + 9-s + 1.15·12-s − 0.554·13-s + 2.06·15-s + 1.94·17-s − 0.458·19-s + 1.78·20-s + 1.74·21-s − 0.834·23-s + 4/5·25-s − 0.769·27-s + 1.51·28-s − 0.742·29-s + 2.70·35-s − 36-s + 0.328·37-s + 0.640·39-s + 0.914·43-s − 1.78·45-s + 0.583·47-s + 6/7·49-s − 2.24·51-s + 0.554·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8311689 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8311689 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.373166905996796479897185315831, −8.237137780706074720781002216008, −7.63930319983651167489926020606, −7.57298543722198551418129270716, −7.18890620322741594960278610711, −6.57680736321764174831536427892, −6.35727315716280202927335840733, −5.86668431895590555623422560858, −5.36429660867862093327325854009, −5.26270590275650783152496764163, −4.56146987489359038981656081379, −4.11461876509841742932086735053, −3.86427875009663268138519906397, −3.72118395883004514814902150366, −2.99205972758778751930206975744, −2.57341570869275308492125437365, −1.52897336538699596388933939554, −0.76100929863801819776434290851, 0, 0,
0.76100929863801819776434290851, 1.52897336538699596388933939554, 2.57341570869275308492125437365, 2.99205972758778751930206975744, 3.72118395883004514814902150366, 3.86427875009663268138519906397, 4.11461876509841742932086735053, 4.56146987489359038981656081379, 5.26270590275650783152496764163, 5.36429660867862093327325854009, 5.86668431895590555623422560858, 6.35727315716280202927335840733, 6.57680736321764174831536427892, 7.18890620322741594960278610711, 7.57298543722198551418129270716, 7.63930319983651167489926020606, 8.237137780706074720781002216008, 8.373166905996796479897185315831