Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 16 x + 144 x^{2} + 1424 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.467900400776$, $\pm0.897571575811$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.803072.3 |
Galois group: | $D_{4}$ |
Jacobians: | $140$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9506$ | $62986756$ | $498009615362$ | $3935396642217488$ | $31181284920978445666$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $106$ | $7954$ | $706426$ | $62723238$ | $5583981546$ | $496982947186$ | $44231335142842$ | $3936588824714814$ | $350356401626283178$ | $31181719947056460114$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 140 curves (of which all are hyperelliptic):
- $y^2=56 x^6+77 x^5+60 x^4+32 x^3+15 x^2+84 x+18$
- $y^2=84 x^6+45 x^5+14 x^4+58 x^3+81 x^2+49 x+85$
- $y^2=71 x^6+49 x^5+86 x^4+31 x^3+70 x^2+30 x+41$
- $y^2=81 x^6+44 x^5+61 x^4+86 x^3+25 x^2+68 x+47$
- $y^2=73 x^6+42 x^5+15 x^4+7 x^3+45 x^2+32 x+19$
- $y^2=49 x^6+63 x^5+49 x^4+8 x^3+24 x^2+41 x+61$
- $y^2=81 x^6+82 x^5+81 x^4+27 x^3+50 x^2+71 x+42$
- $y^2=47 x^6+78 x^5+81 x^4+55 x^3+47 x^2+18 x+56$
- $y^2=17 x^6+32 x^5+4 x^4+3 x^3+60 x^2+18 x+82$
- $y^2=21 x^6+65 x^5+85 x^4+64 x^3+9 x^2+7 x+71$
- $y^2=87 x^6+49 x^5+57 x^4+33 x^3+61 x^2+85 x+12$
- $y^2=56 x^6+31 x^5+44 x^4+12 x^3+32 x^2+55 x+59$
- $y^2=55 x^6+11 x^5+63 x^4+6 x^3+41 x^2+77 x+51$
- $y^2=55 x^6+30 x^5+49 x^4+82 x^3+45 x^2+44 x+78$
- $y^2=87 x^6+43 x^5+74 x^4+56 x^3+80 x^2+85 x$
- $y^2=42 x^6+5 x^5+9 x^4+84 x^3+83 x^2+88 x+38$
- $y^2=27 x^6+82 x^5+20 x^4+44 x^3+29 x^2+53 x+22$
- $y^2=88 x^6+83 x^5+72 x^4+58 x^3+24 x^2+22 x+44$
- $y^2=67 x^6+58 x^5+27 x^4+42 x^3+21 x^2+86 x+68$
- $y^2=14 x^6+7 x^5+5 x^4+67 x^3+2 x^2+56 x+27$
- and 120 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is 4.0.803072.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.aq_fo | $2$ | (not in LMFDB) |