L(s) = 1 | − 3·5-s + 5·7-s − 7·11-s + 2·13-s − 8·17-s + 2·19-s + 23-s + 25-s + 7·29-s − 31-s − 15·35-s + 37-s − 8·41-s − 12·43-s − 5·47-s + 9·49-s − 53-s + 21·55-s + 4·59-s − 25·61-s − 6·65-s + 4·67-s − 3·71-s − 24·73-s − 35·77-s + 16·79-s − 18·83-s + ⋯ |
L(s) = 1 | − 1.34·5-s + 1.88·7-s − 2.11·11-s + 0.554·13-s − 1.94·17-s + 0.458·19-s + 0.208·23-s + 1/5·25-s + 1.29·29-s − 0.179·31-s − 2.53·35-s + 0.164·37-s − 1.24·41-s − 1.82·43-s − 0.729·47-s + 9/7·49-s − 0.137·53-s + 2.83·55-s + 0.520·59-s − 3.20·61-s − 0.744·65-s + 0.488·67-s − 0.356·71-s − 2.80·73-s − 3.98·77-s + 1.80·79-s − 1.97·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7884864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7884864 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.398832495251478827232732214135, −8.290991047036757997709273293975, −7.961906441728662115920940131962, −7.61535106580998324094938792885, −7.07624949049831260516644937760, −7.06433575423158418735995593496, −6.23247010404546045564286850038, −5.98492608229808507628673856736, −5.29379124278750908746513348198, −4.87669998411317802149597655784, −4.67902431801573317527577020400, −4.59379469499948889398207946036, −3.80861742399559882211207823474, −3.44689735577252670140106788892, −2.64506894971593902596127459427, −2.61859105865621800042631647147, −1.59496940392044983676594417019, −1.46351741509729371177242022736, 0, 0,
1.46351741509729371177242022736, 1.59496940392044983676594417019, 2.61859105865621800042631647147, 2.64506894971593902596127459427, 3.44689735577252670140106788892, 3.80861742399559882211207823474, 4.59379469499948889398207946036, 4.67902431801573317527577020400, 4.87669998411317802149597655784, 5.29379124278750908746513348198, 5.98492608229808507628673856736, 6.23247010404546045564286850038, 7.06433575423158418735995593496, 7.07624949049831260516644937760, 7.61535106580998324094938792885, 7.961906441728662115920940131962, 8.290991047036757997709273293975, 8.398832495251478827232732214135