Properties

Label 2808.2.a.p.1.2
Level $2808$
Weight $2$
Character 2808.1
Self dual yes
Analytic conductor $22.422$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(1,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-3,0,5,0,0,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.4219928876\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 2808.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.561553 q^{5} +0.438447 q^{7} -5.56155 q^{11} +1.00000 q^{13} -4.00000 q^{17} +5.12311 q^{19} +6.68466 q^{23} -4.68466 q^{25} -2.68466 q^{29} -6.68466 q^{31} +0.246211 q^{35} +6.68466 q^{37} -12.2462 q^{41} -1.87689 q^{43} +3.68466 q^{47} -6.80776 q^{49} +1.56155 q^{53} -3.12311 q^{55} -2.12311 q^{59} -14.5616 q^{61} +0.561553 q^{65} +10.2462 q^{67} -7.68466 q^{71} -12.0000 q^{73} -2.43845 q^{77} +8.00000 q^{79} -17.2462 q^{83} -2.24621 q^{85} -1.00000 q^{89} +0.438447 q^{91} +2.87689 q^{95} +16.4924 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{5} + 5 q^{7} - 7 q^{11} + 2 q^{13} - 8 q^{17} + 2 q^{19} + q^{23} + 3 q^{25} + 7 q^{29} - q^{31} - 16 q^{35} + q^{37} - 8 q^{41} - 12 q^{43} - 5 q^{47} + 7 q^{49} - q^{53} + 2 q^{55} + 4 q^{59}+ \cdots + 14 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.561553 0.251134 0.125567 0.992085i \(-0.459925\pi\)
0.125567 + 0.992085i \(0.459925\pi\)
\(6\) 0 0
\(7\) 0.438447 0.165717 0.0828587 0.996561i \(-0.473595\pi\)
0.0828587 + 0.996561i \(0.473595\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.56155 −1.67687 −0.838436 0.545001i \(-0.816529\pi\)
−0.838436 + 0.545001i \(0.816529\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 5.12311 1.17532 0.587661 0.809108i \(-0.300049\pi\)
0.587661 + 0.809108i \(0.300049\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.68466 1.39385 0.696924 0.717145i \(-0.254552\pi\)
0.696924 + 0.717145i \(0.254552\pi\)
\(24\) 0 0
\(25\) −4.68466 −0.936932
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.68466 −0.498529 −0.249264 0.968436i \(-0.580189\pi\)
−0.249264 + 0.968436i \(0.580189\pi\)
\(30\) 0 0
\(31\) −6.68466 −1.20060 −0.600300 0.799775i \(-0.704952\pi\)
−0.600300 + 0.799775i \(0.704952\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.246211 0.0416173
\(36\) 0 0
\(37\) 6.68466 1.09895 0.549476 0.835510i \(-0.314828\pi\)
0.549476 + 0.835510i \(0.314828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −12.2462 −1.91254 −0.956268 0.292490i \(-0.905516\pi\)
−0.956268 + 0.292490i \(0.905516\pi\)
\(42\) 0 0
\(43\) −1.87689 −0.286224 −0.143112 0.989707i \(-0.545711\pi\)
−0.143112 + 0.989707i \(0.545711\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.68466 0.537463 0.268731 0.963215i \(-0.413396\pi\)
0.268731 + 0.963215i \(0.413396\pi\)
\(48\) 0 0
\(49\) −6.80776 −0.972538
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.56155 0.214496 0.107248 0.994232i \(-0.465796\pi\)
0.107248 + 0.994232i \(0.465796\pi\)
\(54\) 0 0
\(55\) −3.12311 −0.421119
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.12311 −0.276405 −0.138202 0.990404i \(-0.544132\pi\)
−0.138202 + 0.990404i \(0.544132\pi\)
\(60\) 0 0
\(61\) −14.5616 −1.86442 −0.932208 0.361923i \(-0.882120\pi\)
−0.932208 + 0.361923i \(0.882120\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.561553 0.0696521
\(66\) 0 0
\(67\) 10.2462 1.25177 0.625887 0.779914i \(-0.284737\pi\)
0.625887 + 0.779914i \(0.284737\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.68466 −0.912001 −0.456001 0.889979i \(-0.650719\pi\)
−0.456001 + 0.889979i \(0.650719\pi\)
\(72\) 0 0
\(73\) −12.0000 −1.40449 −0.702247 0.711934i \(-0.747820\pi\)
−0.702247 + 0.711934i \(0.747820\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.43845 −0.277887
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −17.2462 −1.89302 −0.946509 0.322678i \(-0.895417\pi\)
−0.946509 + 0.322678i \(0.895417\pi\)
\(84\) 0 0
\(85\) −2.24621 −0.243636
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.00000 −0.106000 −0.0529999 0.998595i \(-0.516878\pi\)
−0.0529999 + 0.998595i \(0.516878\pi\)
\(90\) 0 0
\(91\) 0.438447 0.0459618
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.87689 0.295163
\(96\) 0 0
\(97\) 16.4924 1.67455 0.837276 0.546781i \(-0.184147\pi\)
0.837276 + 0.546781i \(0.184147\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.56155 −0.951410 −0.475705 0.879605i \(-0.657807\pi\)
−0.475705 + 0.879605i \(0.657807\pi\)
\(102\) 0 0
\(103\) 15.9309 1.56972 0.784858 0.619676i \(-0.212736\pi\)
0.784858 + 0.619676i \(0.212736\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −19.3693 −1.87250 −0.936251 0.351331i \(-0.885729\pi\)
−0.936251 + 0.351331i \(0.885729\pi\)
\(108\) 0 0
\(109\) −7.12311 −0.682270 −0.341135 0.940014i \(-0.610811\pi\)
−0.341135 + 0.940014i \(0.610811\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.246211 −0.0231616 −0.0115808 0.999933i \(-0.503686\pi\)
−0.0115808 + 0.999933i \(0.503686\pi\)
\(114\) 0 0
\(115\) 3.75379 0.350043
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.75379 −0.160770
\(120\) 0 0
\(121\) 19.9309 1.81190
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.43845 −0.486430
\(126\) 0 0
\(127\) 12.8078 1.13651 0.568253 0.822854i \(-0.307620\pi\)
0.568253 + 0.822854i \(0.307620\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.12311 0.272867 0.136434 0.990649i \(-0.456436\pi\)
0.136434 + 0.990649i \(0.456436\pi\)
\(132\) 0 0
\(133\) 2.24621 0.194771
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.43845 0.379202 0.189601 0.981861i \(-0.439281\pi\)
0.189601 + 0.981861i \(0.439281\pi\)
\(138\) 0 0
\(139\) −19.6847 −1.66963 −0.834815 0.550530i \(-0.814426\pi\)
−0.834815 + 0.550530i \(0.814426\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.56155 −0.465080
\(144\) 0 0
\(145\) −1.50758 −0.125197
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 22.1771 1.81682 0.908409 0.418083i \(-0.137298\pi\)
0.908409 + 0.418083i \(0.137298\pi\)
\(150\) 0 0
\(151\) −12.4924 −1.01662 −0.508309 0.861174i \(-0.669729\pi\)
−0.508309 + 0.861174i \(0.669729\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.75379 −0.301512
\(156\) 0 0
\(157\) −5.43845 −0.434035 −0.217018 0.976168i \(-0.569633\pi\)
−0.217018 + 0.976168i \(0.569633\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.93087 0.230985
\(162\) 0 0
\(163\) 10.2462 0.802545 0.401273 0.915959i \(-0.368568\pi\)
0.401273 + 0.915959i \(0.368568\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.19224 −0.247023 −0.123511 0.992343i \(-0.539416\pi\)
−0.123511 + 0.992343i \(0.539416\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −19.1231 −1.45390 −0.726951 0.686689i \(-0.759063\pi\)
−0.726951 + 0.686689i \(0.759063\pi\)
\(174\) 0 0
\(175\) −2.05398 −0.155266
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.36932 0.251835 0.125917 0.992041i \(-0.459813\pi\)
0.125917 + 0.992041i \(0.459813\pi\)
\(180\) 0 0
\(181\) −21.4384 −1.59351 −0.796754 0.604304i \(-0.793451\pi\)
−0.796754 + 0.604304i \(0.793451\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.75379 0.275984
\(186\) 0 0
\(187\) 22.2462 1.62680
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −16.6847 −1.20726 −0.603630 0.797265i \(-0.706279\pi\)
−0.603630 + 0.797265i \(0.706279\pi\)
\(192\) 0 0
\(193\) −21.3693 −1.53820 −0.769099 0.639130i \(-0.779294\pi\)
−0.769099 + 0.639130i \(0.779294\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.68466 0.262521 0.131261 0.991348i \(-0.458098\pi\)
0.131261 + 0.991348i \(0.458098\pi\)
\(198\) 0 0
\(199\) 15.4384 1.09440 0.547201 0.837001i \(-0.315693\pi\)
0.547201 + 0.837001i \(0.315693\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.17708 −0.0826149
\(204\) 0 0
\(205\) −6.87689 −0.480303
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −28.4924 −1.97086
\(210\) 0 0
\(211\) −13.0000 −0.894957 −0.447478 0.894295i \(-0.647678\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.05398 −0.0718805
\(216\) 0 0
\(217\) −2.93087 −0.198960
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.31534 −0.551909 −0.275954 0.961171i \(-0.588994\pi\)
−0.275954 + 0.961171i \(0.588994\pi\)
\(228\) 0 0
\(229\) 0.438447 0.0289734 0.0144867 0.999895i \(-0.495389\pi\)
0.0144867 + 0.999895i \(0.495389\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −22.2462 −1.45740 −0.728699 0.684834i \(-0.759875\pi\)
−0.728699 + 0.684834i \(0.759875\pi\)
\(234\) 0 0
\(235\) 2.06913 0.134975
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.1231 −0.719494 −0.359747 0.933050i \(-0.617137\pi\)
−0.359747 + 0.933050i \(0.617137\pi\)
\(240\) 0 0
\(241\) 4.87689 0.314148 0.157074 0.987587i \(-0.449794\pi\)
0.157074 + 0.987587i \(0.449794\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.82292 −0.244237
\(246\) 0 0
\(247\) 5.12311 0.325975
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 29.1231 1.83823 0.919117 0.393985i \(-0.128904\pi\)
0.919117 + 0.393985i \(0.128904\pi\)
\(252\) 0 0
\(253\) −37.1771 −2.33730
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 20.2462 1.26292 0.631462 0.775407i \(-0.282455\pi\)
0.631462 + 0.775407i \(0.282455\pi\)
\(258\) 0 0
\(259\) 2.93087 0.182115
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.93087 0.427376 0.213688 0.976902i \(-0.431452\pi\)
0.213688 + 0.976902i \(0.431452\pi\)
\(264\) 0 0
\(265\) 0.876894 0.0538672
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −20.4384 −1.24615 −0.623077 0.782160i \(-0.714118\pi\)
−0.623077 + 0.782160i \(0.714118\pi\)
\(270\) 0 0
\(271\) 26.2462 1.59434 0.797172 0.603752i \(-0.206328\pi\)
0.797172 + 0.603752i \(0.206328\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 26.0540 1.57111
\(276\) 0 0
\(277\) −5.68466 −0.341558 −0.170779 0.985309i \(-0.554628\pi\)
−0.170779 + 0.985309i \(0.554628\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.00000 −0.417585 −0.208792 0.977960i \(-0.566953\pi\)
−0.208792 + 0.977960i \(0.566953\pi\)
\(282\) 0 0
\(283\) 3.87689 0.230457 0.115229 0.993339i \(-0.463240\pi\)
0.115229 + 0.993339i \(0.463240\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.36932 −0.316941
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 18.8769 1.10280 0.551400 0.834241i \(-0.314094\pi\)
0.551400 + 0.834241i \(0.314094\pi\)
\(294\) 0 0
\(295\) −1.19224 −0.0694147
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.68466 0.386584
\(300\) 0 0
\(301\) −0.822919 −0.0474323
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.17708 −0.468218
\(306\) 0 0
\(307\) −17.6155 −1.00537 −0.502686 0.864469i \(-0.667655\pi\)
−0.502686 + 0.864469i \(0.667655\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 21.5616 1.22264 0.611322 0.791382i \(-0.290638\pi\)
0.611322 + 0.791382i \(0.290638\pi\)
\(312\) 0 0
\(313\) −14.6155 −0.826118 −0.413059 0.910704i \(-0.635540\pi\)
−0.413059 + 0.910704i \(0.635540\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.7538 −0.660159 −0.330079 0.943953i \(-0.607075\pi\)
−0.330079 + 0.943953i \(0.607075\pi\)
\(318\) 0 0
\(319\) 14.9309 0.835968
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −20.4924 −1.14023
\(324\) 0 0
\(325\) −4.68466 −0.259858
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.61553 0.0890669
\(330\) 0 0
\(331\) 10.8769 0.597848 0.298924 0.954277i \(-0.403372\pi\)
0.298924 + 0.954277i \(0.403372\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.75379 0.314363
\(336\) 0 0
\(337\) 21.4924 1.17077 0.585383 0.810757i \(-0.300944\pi\)
0.585383 + 0.810757i \(0.300944\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 37.1771 2.01325
\(342\) 0 0
\(343\) −6.05398 −0.326884
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.36932 −0.180874 −0.0904372 0.995902i \(-0.528826\pi\)
−0.0904372 + 0.995902i \(0.528826\pi\)
\(348\) 0 0
\(349\) −7.75379 −0.415051 −0.207525 0.978230i \(-0.566541\pi\)
−0.207525 + 0.978230i \(0.566541\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 21.0000 1.11772 0.558859 0.829263i \(-0.311239\pi\)
0.558859 + 0.829263i \(0.311239\pi\)
\(354\) 0 0
\(355\) −4.31534 −0.229035
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.8078 1.09819 0.549096 0.835759i \(-0.314972\pi\)
0.549096 + 0.835759i \(0.314972\pi\)
\(360\) 0 0
\(361\) 7.24621 0.381380
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.73863 −0.352716
\(366\) 0 0
\(367\) −3.12311 −0.163025 −0.0815124 0.996672i \(-0.525975\pi\)
−0.0815124 + 0.996672i \(0.525975\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.684658 0.0355457
\(372\) 0 0
\(373\) 20.8078 1.07739 0.538693 0.842502i \(-0.318918\pi\)
0.538693 + 0.842502i \(0.318918\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.68466 −0.138267
\(378\) 0 0
\(379\) 11.7538 0.603752 0.301876 0.953347i \(-0.402387\pi\)
0.301876 + 0.953347i \(0.402387\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −29.8617 −1.52586 −0.762932 0.646479i \(-0.776241\pi\)
−0.762932 + 0.646479i \(0.776241\pi\)
\(384\) 0 0
\(385\) −1.36932 −0.0697869
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −32.7386 −1.65991 −0.829957 0.557827i \(-0.811635\pi\)
−0.829957 + 0.557827i \(0.811635\pi\)
\(390\) 0 0
\(391\) −26.7386 −1.35223
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.49242 0.226038
\(396\) 0 0
\(397\) 11.3153 0.567901 0.283950 0.958839i \(-0.408355\pi\)
0.283950 + 0.958839i \(0.408355\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 30.1231 1.50428 0.752138 0.659006i \(-0.229023\pi\)
0.752138 + 0.659006i \(0.229023\pi\)
\(402\) 0 0
\(403\) −6.68466 −0.332987
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −37.1771 −1.84280
\(408\) 0 0
\(409\) 6.87689 0.340041 0.170020 0.985441i \(-0.445617\pi\)
0.170020 + 0.985441i \(0.445617\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.930870 −0.0458051
\(414\) 0 0
\(415\) −9.68466 −0.475401
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.8769 1.01990 0.509952 0.860203i \(-0.329663\pi\)
0.509952 + 0.860203i \(0.329663\pi\)
\(420\) 0 0
\(421\) −32.7386 −1.59558 −0.797792 0.602933i \(-0.793999\pi\)
−0.797792 + 0.602933i \(0.793999\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 18.7386 0.908957
\(426\) 0 0
\(427\) −6.38447 −0.308966
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.43845 −0.261961 −0.130980 0.991385i \(-0.541812\pi\)
−0.130980 + 0.991385i \(0.541812\pi\)
\(432\) 0 0
\(433\) 0.930870 0.0447347 0.0223674 0.999750i \(-0.492880\pi\)
0.0223674 + 0.999750i \(0.492880\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 34.2462 1.63822
\(438\) 0 0
\(439\) −7.19224 −0.343267 −0.171633 0.985161i \(-0.554904\pi\)
−0.171633 + 0.985161i \(0.554904\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.2462 0.961927 0.480963 0.876741i \(-0.340287\pi\)
0.480963 + 0.876741i \(0.340287\pi\)
\(444\) 0 0
\(445\) −0.561553 −0.0266202
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.3153 0.675583 0.337791 0.941221i \(-0.390320\pi\)
0.337791 + 0.941221i \(0.390320\pi\)
\(450\) 0 0
\(451\) 68.1080 3.20708
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.246211 0.0115426
\(456\) 0 0
\(457\) 12.0000 0.561336 0.280668 0.959805i \(-0.409444\pi\)
0.280668 + 0.959805i \(0.409444\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.8078 0.503368 0.251684 0.967809i \(-0.419016\pi\)
0.251684 + 0.967809i \(0.419016\pi\)
\(462\) 0 0
\(463\) 40.3002 1.87291 0.936454 0.350790i \(-0.114087\pi\)
0.936454 + 0.350790i \(0.114087\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −31.1231 −1.44021 −0.720103 0.693867i \(-0.755905\pi\)
−0.720103 + 0.693867i \(0.755905\pi\)
\(468\) 0 0
\(469\) 4.49242 0.207441
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10.4384 0.479960
\(474\) 0 0
\(475\) −24.0000 −1.10120
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 15.4384 0.705401 0.352700 0.935736i \(-0.385264\pi\)
0.352700 + 0.935736i \(0.385264\pi\)
\(480\) 0 0
\(481\) 6.68466 0.304794
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.26137 0.420537
\(486\) 0 0
\(487\) −2.19224 −0.0993397 −0.0496698 0.998766i \(-0.515817\pi\)
−0.0496698 + 0.998766i \(0.515817\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 10.7386 0.483644
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.36932 −0.151135
\(498\) 0 0
\(499\) 19.1231 0.856068 0.428034 0.903763i \(-0.359206\pi\)
0.428034 + 0.903763i \(0.359206\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.0540 0.804987 0.402493 0.915423i \(-0.368144\pi\)
0.402493 + 0.915423i \(0.368144\pi\)
\(504\) 0 0
\(505\) −5.36932 −0.238931
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.68466 −0.0746712 −0.0373356 0.999303i \(-0.511887\pi\)
−0.0373356 + 0.999303i \(0.511887\pi\)
\(510\) 0 0
\(511\) −5.26137 −0.232749
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.94602 0.394209
\(516\) 0 0
\(517\) −20.4924 −0.901256
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.0000 −1.22670 −0.613351 0.789810i \(-0.710179\pi\)
−0.613351 + 0.789810i \(0.710179\pi\)
\(522\) 0 0
\(523\) 17.3002 0.756484 0.378242 0.925707i \(-0.376529\pi\)
0.378242 + 0.925707i \(0.376529\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 26.7386 1.16475
\(528\) 0 0
\(529\) 21.6847 0.942811
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12.2462 −0.530442
\(534\) 0 0
\(535\) −10.8769 −0.470249
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 37.8617 1.63082
\(540\) 0 0
\(541\) −32.6847 −1.40522 −0.702612 0.711574i \(-0.747983\pi\)
−0.702612 + 0.711574i \(0.747983\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4.00000 −0.171341
\(546\) 0 0
\(547\) −21.1771 −0.905467 −0.452733 0.891646i \(-0.649551\pi\)
−0.452733 + 0.891646i \(0.649551\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −13.7538 −0.585931
\(552\) 0 0
\(553\) 3.50758 0.149157
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 31.8617 1.35003 0.675013 0.737806i \(-0.264138\pi\)
0.675013 + 0.737806i \(0.264138\pi\)
\(558\) 0 0
\(559\) −1.87689 −0.0793842
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 20.0000 0.842900 0.421450 0.906852i \(-0.361521\pi\)
0.421450 + 0.906852i \(0.361521\pi\)
\(564\) 0 0
\(565\) −0.138261 −0.00581667
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 28.0000 1.17382 0.586911 0.809652i \(-0.300344\pi\)
0.586911 + 0.809652i \(0.300344\pi\)
\(570\) 0 0
\(571\) −32.6695 −1.36718 −0.683588 0.729868i \(-0.739581\pi\)
−0.683588 + 0.729868i \(0.739581\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −31.3153 −1.30594
\(576\) 0 0
\(577\) −12.2462 −0.509816 −0.254908 0.966965i \(-0.582045\pi\)
−0.254908 + 0.966965i \(0.582045\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.56155 −0.313706
\(582\) 0 0
\(583\) −8.68466 −0.359682
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.8078 −0.817554 −0.408777 0.912634i \(-0.634045\pi\)
−0.408777 + 0.912634i \(0.634045\pi\)
\(588\) 0 0
\(589\) −34.2462 −1.41109
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 39.6695 1.62903 0.814516 0.580142i \(-0.197003\pi\)
0.814516 + 0.580142i \(0.197003\pi\)
\(594\) 0 0
\(595\) −0.984845 −0.0403747
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.7386 0.438769 0.219384 0.975639i \(-0.429595\pi\)
0.219384 + 0.975639i \(0.429595\pi\)
\(600\) 0 0
\(601\) 10.7538 0.438656 0.219328 0.975651i \(-0.429613\pi\)
0.219328 + 0.975651i \(0.429613\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11.1922 0.455029
\(606\) 0 0
\(607\) −18.7386 −0.760578 −0.380289 0.924868i \(-0.624175\pi\)
−0.380289 + 0.924868i \(0.624175\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.68466 0.149065
\(612\) 0 0
\(613\) −38.0540 −1.53699 −0.768493 0.639858i \(-0.778993\pi\)
−0.768493 + 0.639858i \(0.778993\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.19224 0.0479976 0.0239988 0.999712i \(-0.492360\pi\)
0.0239988 + 0.999712i \(0.492360\pi\)
\(618\) 0 0
\(619\) 39.6155 1.59228 0.796141 0.605111i \(-0.206871\pi\)
0.796141 + 0.605111i \(0.206871\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −0.438447 −0.0175660
\(624\) 0 0
\(625\) 20.3693 0.814773
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −26.7386 −1.06614
\(630\) 0 0
\(631\) −45.4233 −1.80827 −0.904136 0.427244i \(-0.859485\pi\)
−0.904136 + 0.427244i \(0.859485\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7.19224 0.285415
\(636\) 0 0
\(637\) −6.80776 −0.269733
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5.61553 0.221800 0.110900 0.993832i \(-0.464627\pi\)
0.110900 + 0.993832i \(0.464627\pi\)
\(642\) 0 0
\(643\) −10.2462 −0.404071 −0.202036 0.979378i \(-0.564756\pi\)
−0.202036 + 0.979378i \(0.564756\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20.9309 0.822877 0.411439 0.911437i \(-0.365026\pi\)
0.411439 + 0.911437i \(0.365026\pi\)
\(648\) 0 0
\(649\) 11.8078 0.463495
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.87689 0.190848 0.0954238 0.995437i \(-0.469579\pi\)
0.0954238 + 0.995437i \(0.469579\pi\)
\(654\) 0 0
\(655\) 1.75379 0.0685262
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −22.4924 −0.876180 −0.438090 0.898931i \(-0.644345\pi\)
−0.438090 + 0.898931i \(0.644345\pi\)
\(660\) 0 0
\(661\) −23.3153 −0.906862 −0.453431 0.891291i \(-0.649800\pi\)
−0.453431 + 0.891291i \(0.649800\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.26137 0.0489137
\(666\) 0 0
\(667\) −17.9460 −0.694873
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 80.9848 3.12639
\(672\) 0 0
\(673\) 14.8078 0.570797 0.285399 0.958409i \(-0.407874\pi\)
0.285399 + 0.958409i \(0.407874\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.3693 0.513825 0.256912 0.966435i \(-0.417295\pi\)
0.256912 + 0.966435i \(0.417295\pi\)
\(678\) 0 0
\(679\) 7.23106 0.277502
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 23.6307 0.904203 0.452101 0.891967i \(-0.350674\pi\)
0.452101 + 0.891967i \(0.350674\pi\)
\(684\) 0 0
\(685\) 2.49242 0.0952306
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.56155 0.0594904
\(690\) 0 0
\(691\) 18.8769 0.718111 0.359055 0.933316i \(-0.383099\pi\)
0.359055 + 0.933316i \(0.383099\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11.0540 −0.419301
\(696\) 0 0
\(697\) 48.9848 1.85543
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 32.1080 1.21270 0.606350 0.795198i \(-0.292633\pi\)
0.606350 + 0.795198i \(0.292633\pi\)
\(702\) 0 0
\(703\) 34.2462 1.29162
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.19224 −0.157665
\(708\) 0 0
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −44.6847 −1.67345
\(714\) 0 0
\(715\) −3.12311 −0.116798
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −28.3002 −1.05542 −0.527709 0.849425i \(-0.676949\pi\)
−0.527709 + 0.849425i \(0.676949\pi\)
\(720\) 0 0
\(721\) 6.98485 0.260129
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 12.5767 0.467087
\(726\) 0 0
\(727\) 28.1080 1.04247 0.521233 0.853414i \(-0.325472\pi\)
0.521233 + 0.853414i \(0.325472\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.50758 0.277678
\(732\) 0 0
\(733\) 48.3002 1.78401 0.892004 0.452027i \(-0.149299\pi\)
0.892004 + 0.452027i \(0.149299\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −56.9848 −2.09906
\(738\) 0 0
\(739\) 19.7538 0.726655 0.363327 0.931662i \(-0.381641\pi\)
0.363327 + 0.931662i \(0.381641\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31.9309 1.17143 0.585715 0.810517i \(-0.300814\pi\)
0.585715 + 0.810517i \(0.300814\pi\)
\(744\) 0 0
\(745\) 12.4536 0.456265
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −8.49242 −0.310306
\(750\) 0 0
\(751\) −3.12311 −0.113964 −0.0569819 0.998375i \(-0.518148\pi\)
−0.0569819 + 0.998375i \(0.518148\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −7.01515 −0.255308
\(756\) 0 0
\(757\) −9.61553 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10.1231 −0.366962 −0.183481 0.983023i \(-0.558737\pi\)
−0.183481 + 0.983023i \(0.558737\pi\)
\(762\) 0 0
\(763\) −3.12311 −0.113064
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.12311 −0.0766609
\(768\) 0 0
\(769\) 1.12311 0.0405002 0.0202501 0.999795i \(-0.493554\pi\)
0.0202501 + 0.999795i \(0.493554\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.80776 −0.244858 −0.122429 0.992477i \(-0.539068\pi\)
−0.122429 + 0.992477i \(0.539068\pi\)
\(774\) 0 0
\(775\) 31.3153 1.12488
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −62.7386 −2.24784
\(780\) 0 0
\(781\) 42.7386 1.52931
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3.05398 −0.109001
\(786\) 0 0
\(787\) −37.3693 −1.33207 −0.666036 0.745919i \(-0.732010\pi\)
−0.666036 + 0.745919i \(0.732010\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.107951 −0.00383828
\(792\) 0 0
\(793\) −14.5616 −0.517096
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.3002 0.364851 0.182426 0.983220i \(-0.441605\pi\)
0.182426 + 0.983220i \(0.441605\pi\)
\(798\) 0 0
\(799\) −14.7386 −0.521415
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 66.7386 2.35516
\(804\) 0 0
\(805\) 1.64584 0.0580082
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −26.2462 −0.922768 −0.461384 0.887201i \(-0.652647\pi\)
−0.461384 + 0.887201i \(0.652647\pi\)
\(810\) 0 0
\(811\) −6.63068 −0.232835 −0.116417 0.993200i \(-0.537141\pi\)
−0.116417 + 0.993200i \(0.537141\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.75379 0.201546
\(816\) 0 0
\(817\) −9.61553 −0.336405
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 52.2462 1.82341 0.911703 0.410851i \(-0.134768\pi\)
0.911703 + 0.410851i \(0.134768\pi\)
\(822\) 0 0
\(823\) −13.9309 −0.485600 −0.242800 0.970076i \(-0.578066\pi\)
−0.242800 + 0.970076i \(0.578066\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.8078 0.549690 0.274845 0.961489i \(-0.411373\pi\)
0.274845 + 0.961489i \(0.411373\pi\)
\(828\) 0 0
\(829\) −13.1922 −0.458185 −0.229093 0.973405i \(-0.573576\pi\)
−0.229093 + 0.973405i \(0.573576\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 27.2311 0.943500
\(834\) 0 0
\(835\) −1.79261 −0.0620358
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 45.0540 1.55544 0.777718 0.628613i \(-0.216377\pi\)
0.777718 + 0.628613i \(0.216377\pi\)
\(840\) 0 0
\(841\) −21.7926 −0.751469
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.561553 0.0193180
\(846\) 0 0
\(847\) 8.73863 0.300263
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 44.6847 1.53177
\(852\) 0 0
\(853\) 9.31534 0.318951 0.159476 0.987202i \(-0.449020\pi\)
0.159476 + 0.987202i \(0.449020\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.73863 0.298506 0.149253 0.988799i \(-0.452313\pi\)
0.149253 + 0.988799i \(0.452313\pi\)
\(858\) 0 0
\(859\) −41.1771 −1.40494 −0.702472 0.711711i \(-0.747920\pi\)
−0.702472 + 0.711711i \(0.747920\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −6.17708 −0.210270 −0.105135 0.994458i \(-0.533528\pi\)
−0.105135 + 0.994458i \(0.533528\pi\)
\(864\) 0 0
\(865\) −10.7386 −0.365125
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −44.4924 −1.50930
\(870\) 0 0
\(871\) 10.2462 0.347180
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.38447 −0.0806099
\(876\) 0 0
\(877\) −2.05398 −0.0693578 −0.0346789 0.999399i \(-0.511041\pi\)
−0.0346789 + 0.999399i \(0.511041\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 37.7538 1.27196 0.635979 0.771707i \(-0.280597\pi\)
0.635979 + 0.771707i \(0.280597\pi\)
\(882\) 0 0
\(883\) 3.31534 0.111570 0.0557851 0.998443i \(-0.482234\pi\)
0.0557851 + 0.998443i \(0.482234\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −30.0540 −1.00911 −0.504557 0.863378i \(-0.668344\pi\)
−0.504557 + 0.863378i \(0.668344\pi\)
\(888\) 0 0
\(889\) 5.61553 0.188339
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 18.8769 0.631691
\(894\) 0 0
\(895\) 1.89205 0.0632442
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 17.9460 0.598533
\(900\) 0 0
\(901\) −6.24621 −0.208091
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12.0388 −0.400184
\(906\) 0 0
\(907\) 9.93087 0.329749 0.164875 0.986315i \(-0.447278\pi\)
0.164875 + 0.986315i \(0.447278\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7.31534 −0.242368 −0.121184 0.992630i \(-0.538669\pi\)
−0.121184 + 0.992630i \(0.538669\pi\)
\(912\) 0 0
\(913\) 95.9157 3.17435
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.36932 0.0452188
\(918\) 0 0
\(919\) −28.8078 −0.950280 −0.475140 0.879910i \(-0.657603\pi\)
−0.475140 + 0.879910i \(0.657603\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −7.68466 −0.252944
\(924\) 0 0
\(925\) −31.3153 −1.02964
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −12.8229 −0.420706 −0.210353 0.977625i \(-0.567461\pi\)
−0.210353 + 0.977625i \(0.567461\pi\)
\(930\) 0 0
\(931\) −34.8769 −1.14304
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 12.4924 0.408546
\(936\) 0 0
\(937\) 9.73863 0.318147 0.159074 0.987267i \(-0.449149\pi\)
0.159074 + 0.987267i \(0.449149\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −14.0000 −0.456387 −0.228193 0.973616i \(-0.573282\pi\)
−0.228193 + 0.973616i \(0.573282\pi\)
\(942\) 0 0
\(943\) −81.8617 −2.66579
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −28.3693 −0.921879 −0.460939 0.887432i \(-0.652487\pi\)
−0.460939 + 0.887432i \(0.652487\pi\)
\(948\) 0 0
\(949\) −12.0000 −0.389536
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 44.3542 1.43677 0.718386 0.695645i \(-0.244881\pi\)
0.718386 + 0.695645i \(0.244881\pi\)
\(954\) 0 0
\(955\) −9.36932 −0.303184
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.94602 0.0628404
\(960\) 0 0
\(961\) 13.6847 0.441441
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −12.0000 −0.386294
\(966\) 0 0
\(967\) −27.8078 −0.894237 −0.447119 0.894475i \(-0.647550\pi\)
−0.447119 + 0.894475i \(0.647550\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −8.63068 −0.276972 −0.138486 0.990364i \(-0.544224\pi\)
−0.138486 + 0.990364i \(0.544224\pi\)
\(972\) 0 0
\(973\) −8.63068 −0.276687
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.61553 0.211649 0.105825 0.994385i \(-0.466252\pi\)
0.105825 + 0.994385i \(0.466252\pi\)
\(978\) 0 0
\(979\) 5.56155 0.177748
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −31.6155 −1.00838 −0.504189 0.863593i \(-0.668209\pi\)
−0.504189 + 0.863593i \(0.668209\pi\)
\(984\) 0 0
\(985\) 2.06913 0.0659280
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.5464 −0.398952
\(990\) 0 0
\(991\) −12.0691 −0.383389 −0.191694 0.981455i \(-0.561398\pi\)
−0.191694 + 0.981455i \(0.561398\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 8.66950 0.274842
\(996\) 0 0
\(997\) −14.1771 −0.448993 −0.224496 0.974475i \(-0.572074\pi\)
−0.224496 + 0.974475i \(0.572074\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.a.p.1.2 2
3.2 odd 2 2808.2.a.v.1.1 yes 2
4.3 odd 2 5616.2.a.bj.1.2 2
12.11 even 2 5616.2.a.bv.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2808.2.a.p.1.2 2 1.1 even 1 trivial
2808.2.a.v.1.1 yes 2 3.2 odd 2
5616.2.a.bj.1.2 2 4.3 odd 2
5616.2.a.bv.1.1 2 12.11 even 2