Properties

Label 2-2808-1.1-c1-0-39
Degree $2$
Conductor $2808$
Sign $-1$
Analytic cond. $22.4219$
Root an. cond. $4.73518$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.561·5-s + 0.438·7-s − 5.56·11-s + 13-s − 4·17-s + 5.12·19-s + 6.68·23-s − 4.68·25-s − 2.68·29-s − 6.68·31-s + 0.246·35-s + 6.68·37-s − 12.2·41-s − 1.87·43-s + 3.68·47-s − 6.80·49-s + 1.56·53-s − 3.12·55-s − 2.12·59-s − 14.5·61-s + 0.561·65-s + 10.2·67-s − 7.68·71-s − 12·73-s − 2.43·77-s + 8·79-s − 17.2·83-s + ⋯
L(s)  = 1  + 0.251·5-s + 0.165·7-s − 1.67·11-s + 0.277·13-s − 0.970·17-s + 1.17·19-s + 1.39·23-s − 0.936·25-s − 0.498·29-s − 1.20·31-s + 0.0416·35-s + 1.09·37-s − 1.91·41-s − 0.286·43-s + 0.537·47-s − 0.972·49-s + 0.214·53-s − 0.421·55-s − 0.276·59-s − 1.86·61-s + 0.0696·65-s + 1.25·67-s − 0.912·71-s − 1.40·73-s − 0.277·77-s + 0.900·79-s − 1.89·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2808\)    =    \(2^{3} \cdot 3^{3} \cdot 13\)
Sign: $-1$
Analytic conductor: \(22.4219\)
Root analytic conductor: \(4.73518\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 0.561T + 5T^{2} \)
7 \( 1 - 0.438T + 7T^{2} \)
11 \( 1 + 5.56T + 11T^{2} \)
17 \( 1 + 4T + 17T^{2} \)
19 \( 1 - 5.12T + 19T^{2} \)
23 \( 1 - 6.68T + 23T^{2} \)
29 \( 1 + 2.68T + 29T^{2} \)
31 \( 1 + 6.68T + 31T^{2} \)
37 \( 1 - 6.68T + 37T^{2} \)
41 \( 1 + 12.2T + 41T^{2} \)
43 \( 1 + 1.87T + 43T^{2} \)
47 \( 1 - 3.68T + 47T^{2} \)
53 \( 1 - 1.56T + 53T^{2} \)
59 \( 1 + 2.12T + 59T^{2} \)
61 \( 1 + 14.5T + 61T^{2} \)
67 \( 1 - 10.2T + 67T^{2} \)
71 \( 1 + 7.68T + 71T^{2} \)
73 \( 1 + 12T + 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 + 17.2T + 83T^{2} \)
89 \( 1 + T + 89T^{2} \)
97 \( 1 - 16.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.398832495251478827232732214135, −7.61535106580998324094938792885, −7.07624949049831260516644937760, −5.98492608229808507628673856736, −5.29379124278750908746513348198, −4.67902431801573317527577020400, −3.44689735577252670140106788892, −2.64506894971593902596127459427, −1.59496940392044983676594417019, 0, 1.59496940392044983676594417019, 2.64506894971593902596127459427, 3.44689735577252670140106788892, 4.67902431801573317527577020400, 5.29379124278750908746513348198, 5.98492608229808507628673856736, 7.07624949049831260516644937760, 7.61535106580998324094938792885, 8.398832495251478827232732214135

Graph of the $Z$-function along the critical line