Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + x + 89 x^{2} )^{2}$ |
$1 + 2 x + 179 x^{2} + 178 x^{3} + 7921 x^{4}$ | |
Frobenius angles: | $\pm0.516878298350$, $\pm0.516878298350$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $66$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8281$ | $65593801$ | $496607727616$ | $3934645792830025$ | $31182157297372129321$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $8276$ | $704438$ | $62711268$ | $5584137772$ | $496983969326$ | $44231325246508$ | $3936588576976708$ | $350356404794973542$ | $31181719949235253556$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 66 curves (of which all are hyperelliptic):
- $y^2=23 x^6+20 x^5+16 x^4+70 x^3+46 x^2+76 x+52$
- $y^2=66 x^6+13 x^5+22 x^4+17 x^3+4 x^2+86 x+49$
- $y^2=40 x^6+81 x^5+52 x^4+29 x^3+70 x^2+35 x+71$
- $y^2=17 x^6+17 x^5+9 x^4+34 x^3+77 x^2+46 x+64$
- $y^2=12 x^6+26 x^5+62 x^4+61 x^3+23 x^2+29 x+35$
- $y^2=79 x^6+57 x^5+41 x^4+4 x^3+33 x^2+26 x+30$
- $y^2=31 x^6+32 x^5+74 x^4+11 x^3+33 x^2+73 x+43$
- $y^2=31 x^6+53 x^5+74 x^4+82 x^3+18 x^2+20 x+72$
- $y^2=11 x^6+14 x^5+68 x^4+6 x^3+8 x^2+43 x+84$
- $y^2=71 x^6+5 x^5+36 x^4+24 x^3+54 x^2+85$
- $y^2=16 x^6+69 x^5+6 x^4+69 x^3+84 x^2+70 x+57$
- $y^2=22 x^6+38 x^5+41 x^4+3 x^3+76 x^2+52 x+71$
- $y^2=73 x^6+27 x^5+71 x^4+80 x^3+25 x^2+15 x+53$
- $y^2=65 x^6+72 x^5+42 x^4+3 x^3+80 x^2+36 x+28$
- $y^2=73 x^6+62 x^5+67 x^4+60 x^3+51 x^2+x+73$
- $y^2=79 x^6+6 x^5+52 x^4+68 x^3+81 x^2+31 x+25$
- $y^2=8 x^6+23 x^5+37 x^4+46 x^3+14 x^2+75 x+79$
- $y^2=31 x^6+80 x^5+10 x^4+24 x^3+85 x^2+18 x+28$
- $y^2=59 x^6+79 x^5+5 x^4+88 x^3+20 x^2+18 x+38$
- $y^2=83 x^6+80 x^5+37 x^4+38 x^3+33 x^2+18 x+54$
- and 46 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The isogeny class factors as 1.89.b 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-355}) \)$)$ |
Base change
This is a primitive isogeny class.