L(s) = 1 | − 4·3-s − 2·5-s − 4·7-s + 8·9-s + 4·11-s − 8·13-s + 8·15-s − 2·17-s + 16·21-s − 4·23-s + 2·25-s − 12·27-s − 6·29-s − 12·31-s − 16·33-s + 8·35-s − 10·37-s + 32·39-s + 2·41-s − 16·45-s + 8·49-s + 8·51-s − 8·55-s − 2·61-s − 32·63-s + 16·65-s − 24·67-s + ⋯ |
L(s) = 1 | − 2.30·3-s − 0.894·5-s − 1.51·7-s + 8/3·9-s + 1.20·11-s − 2.21·13-s + 2.06·15-s − 0.485·17-s + 3.49·21-s − 0.834·23-s + 2/5·25-s − 2.30·27-s − 1.11·29-s − 2.15·31-s − 2.78·33-s + 1.35·35-s − 1.64·37-s + 5.12·39-s + 0.312·41-s − 2.38·45-s + 8/7·49-s + 1.12·51-s − 1.07·55-s − 0.256·61-s − 4.03·63-s + 1.98·65-s − 2.93·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 73984 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 73984 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.69307476059153574624718103556, −11.39152667188298665814085213858, −10.69938993569114459202053886974, −10.58027560156502004373781830544, −9.794841308445417639763710870410, −9.372042058745258052040311736729, −9.203504505709253444089388755482, −8.167808807301135398038047372684, −7.26958994912748527459196450277, −7.13196773457229752788795391652, −6.78657543972434037225504531405, −6.02340381489693443218112682214, −5.69304938056123144287300980663, −5.16442537799594780126266106217, −4.42870091362551455260846792108, −3.93372419305416020206054009696, −3.22071629164455272397309147559, −1.91285182750641487729136243212, 0, 0,
1.91285182750641487729136243212, 3.22071629164455272397309147559, 3.93372419305416020206054009696, 4.42870091362551455260846792108, 5.16442537799594780126266106217, 5.69304938056123144287300980663, 6.02340381489693443218112682214, 6.78657543972434037225504531405, 7.13196773457229752788795391652, 7.26958994912748527459196450277, 8.167808807301135398038047372684, 9.203504505709253444089388755482, 9.372042058745258052040311736729, 9.794841308445417639763710870410, 10.58027560156502004373781830544, 10.69938993569114459202053886974, 11.39152667188298665814085213858, 11.69307476059153574624718103556