Properties

Label 2-2667-1.1-c1-0-60
Degree $2$
Conductor $2667$
Sign $1$
Analytic cond. $21.2961$
Root an. cond. $4.61477$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s + 3·5-s + 7-s + 9-s + 6·11-s − 2·12-s − 13-s + 3·15-s + 4·16-s − 4·19-s − 6·20-s + 21-s + 3·23-s + 4·25-s + 27-s − 2·28-s + 3·29-s + 5·31-s + 6·33-s + 3·35-s − 2·36-s − 7·37-s − 39-s + 6·41-s − 10·43-s − 12·44-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s + 1.34·5-s + 0.377·7-s + 1/3·9-s + 1.80·11-s − 0.577·12-s − 0.277·13-s + 0.774·15-s + 16-s − 0.917·19-s − 1.34·20-s + 0.218·21-s + 0.625·23-s + 4/5·25-s + 0.192·27-s − 0.377·28-s + 0.557·29-s + 0.898·31-s + 1.04·33-s + 0.507·35-s − 1/3·36-s − 1.15·37-s − 0.160·39-s + 0.937·41-s − 1.52·43-s − 1.80·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2667\)    =    \(3 \cdot 7 \cdot 127\)
Sign: $1$
Analytic conductor: \(21.2961\)
Root analytic conductor: \(4.61477\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2667,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.739775183\)
\(L(\frac12)\) \(\approx\) \(2.739775183\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
7 \( 1 - T \)
127 \( 1 - T \)
good2 \( 1 + p T^{2} \) 1.2.a
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.773764419467853775124703867780, −8.583184694018683567028279973443, −7.31727170843408812858724922870, −6.47128817451613464407808826900, −5.79892141358391166239107819835, −4.77844105399236766130837684247, −4.19576988986652335266289856464, −3.16950955287184962161065121707, −1.97142810612244721976820075895, −1.13352671817283173196288281982, 1.13352671817283173196288281982, 1.97142810612244721976820075895, 3.16950955287184962161065121707, 4.19576988986652335266289856464, 4.77844105399236766130837684247, 5.79892141358391166239107819835, 6.47128817451613464407808826900, 7.31727170843408812858724922870, 8.583184694018683567028279973443, 8.773764419467853775124703867780

Graph of the $Z$-function along the critical line