L(s) = 1 | + 7-s + 3·13-s + 5·25-s + 18·31-s + 2·37-s + 8·43-s − 6·49-s − 15·61-s − 11·67-s + 13·79-s + 3·91-s + 33·97-s + 33·103-s − 4·109-s − 11·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 7·169-s + 173-s + 5·175-s + ⋯ |
L(s) = 1 | + 0.377·7-s + 0.832·13-s + 25-s + 3.23·31-s + 0.328·37-s + 1.21·43-s − 6/7·49-s − 1.92·61-s − 1.34·67-s + 1.46·79-s + 0.314·91-s + 3.35·97-s + 3.25·103-s − 0.383·109-s − 121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.538·169-s + 0.0760·173-s + 0.377·175-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5143824 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5143824 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.243349688\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.243349688\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.957845594041777441685976503606, −8.816461954399482816526542109352, −8.614880188907827938813873798234, −7.977926946483047116697374987659, −7.60180260246159955692598488342, −7.58884737148203376123949510851, −6.74191425909987842746220278727, −6.45475002832406033965570038753, −6.05344493236716187471932821006, −5.95103662025693935911652799337, −5.07074140562705290133021837929, −4.77873509028592972501557530030, −4.50837833703573721072753568677, −4.04414834191013381453118875332, −3.23142853138586706696554153105, −3.14281811639296592433677437549, −2.46893187669859520433949196678, −1.90042347101419496517922453147, −1.13158635465035578929384526109, −0.73437428858594037551216184151,
0.73437428858594037551216184151, 1.13158635465035578929384526109, 1.90042347101419496517922453147, 2.46893187669859520433949196678, 3.14281811639296592433677437549, 3.23142853138586706696554153105, 4.04414834191013381453118875332, 4.50837833703573721072753568677, 4.77873509028592972501557530030, 5.07074140562705290133021837929, 5.95103662025693935911652799337, 6.05344493236716187471932821006, 6.45475002832406033965570038753, 6.74191425909987842746220278727, 7.58884737148203376123949510851, 7.60180260246159955692598488342, 7.977926946483047116697374987659, 8.614880188907827938813873798234, 8.816461954399482816526542109352, 8.957845594041777441685976503606