Properties

Label 2-1925-1.1-c1-0-46
Degree $2$
Conductor $1925$
Sign $-1$
Analytic cond. $15.3712$
Root an. cond. $3.92061$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s − 4-s + 2·6-s + 7-s + 3·8-s + 9-s + 11-s + 2·12-s − 4·13-s − 14-s − 16-s − 4·17-s − 18-s − 2·21-s − 22-s + 4·23-s − 6·24-s + 4·26-s + 4·27-s − 28-s − 6·29-s + 10·31-s − 5·32-s − 2·33-s + 4·34-s − 36-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s − 1/2·4-s + 0.816·6-s + 0.377·7-s + 1.06·8-s + 1/3·9-s + 0.301·11-s + 0.577·12-s − 1.10·13-s − 0.267·14-s − 1/4·16-s − 0.970·17-s − 0.235·18-s − 0.436·21-s − 0.213·22-s + 0.834·23-s − 1.22·24-s + 0.784·26-s + 0.769·27-s − 0.188·28-s − 1.11·29-s + 1.79·31-s − 0.883·32-s − 0.348·33-s + 0.685·34-s − 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1925\)    =    \(5^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(15.3712\)
Root analytic conductor: \(3.92061\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 \)
7 \( 1 - T \)
11 \( 1 - T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
3 \( 1 + 2 T + p T^{2} \) 1.3.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.909929466225848181095380267427, −8.100012329111415913136438788578, −7.25001629514993403685065897796, −6.52215690743507933996587795029, −5.48176191593485566243882545926, −4.81403168222361608382158073717, −4.17701189100093347147152961961, −2.53981984920376994621368055964, −1.12960491671305260714837063392, 0, 1.12960491671305260714837063392, 2.53981984920376994621368055964, 4.17701189100093347147152961961, 4.81403168222361608382158073717, 5.48176191593485566243882545926, 6.52215690743507933996587795029, 7.25001629514993403685065897796, 8.100012329111415913136438788578, 8.909929466225848181095380267427

Graph of the $Z$-function along the critical line