Properties

Label 8-1824e4-1.1-c1e4-0-3
Degree $8$
Conductor $1.107\times 10^{13}$
Sign $1$
Analytic cond. $44999.5$
Root an. cond. $3.81637$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·9-s + 20·25-s − 4·29-s − 20·41-s − 28·49-s + 28·53-s + 27·81-s + 44·89-s − 52·113-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 2·9-s + 4·25-s − 0.742·29-s − 3.12·41-s − 4·49-s + 3.84·53-s + 3·81-s + 4.66·89-s − 4.89·113-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{4} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(44999.5\)
Root analytic conductor: \(3.81637\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{4} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.724071544\)
\(L(\frac12)\) \(\approx\) \(1.724071544\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
good5$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.5.a_au_a_fu
7$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.7.a_bc_a_li
11$C_2^3$ \( 1 + 14 T^{4} + p^{4} T^{8} \) 4.11.a_a_a_o
13$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.13.a_aca_a_bna
17$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.17.a_acq_a_cos
23$C_2^3$ \( 1 - 994 T^{4} + p^{4} T^{8} \) 4.23.a_a_a_abmg
29$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.29.e_i_eu_cvu
31$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \) 4.31.a_bc_a_ddm
37$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.37.a_afs_a_mdy
41$C_2^2$ \( ( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \) 4.41.u_hs_csa_uuw
43$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.43.a_gq_a_qks
47$C_2^3$ \( 1 - 1282 T^{4} + p^{4} T^{8} \) 4.47.a_a_a_abxi
53$C_2^2$ \( ( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \) 4.53.abc_pc_aggq_cbgo
59$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.59.a_jc_a_bexi
61$C_2^2$ \( ( 1 - 106 T^{2} + p^{2} T^{4} )^{2} \) 4.61.a_aie_a_bbqk
67$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \) 4.67.a_aem_a_sgs
71$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.71.a_ky_a_bsti
73$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \) 4.73.a_agi_a_zso
79$C_2^2$ \( ( 1 - 146 T^{2} + p^{2} T^{4} )^{2} \) 4.79.a_alg_a_bxzy
83$C_2^3$ \( 1 + 2606 T^{4} + p^{4} T^{8} \) 4.83.a_a_a_dwg
89$C_2^2$ \( ( 1 - 22 T + 242 T^{2} - 22 p T^{3} + p^{2} T^{4} )^{2} \) 4.89.abs_blg_avoe_jdni
97$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.97.a_aoy_a_dfni
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.49695746291395995806772560959, −6.39740734156041367484479555421, −6.35533789700374681779878679686, −5.91663745684891425934127487322, −5.82773742924448125433105682815, −5.32362618354005457784764931618, −5.18188101724575297175271446831, −5.10606867346599081624875237558, −5.01254380231298769648502317228, −4.88279463706779637551110078698, −4.52939095888876984804761808642, −4.14575115895809281609110128980, −3.76127281887857694234866537821, −3.65598813637919085517815423830, −3.47280489036991740611849193263, −3.08523702104777094000804289127, −3.02908369199729169047059251542, −2.69675810148719003658813852852, −2.55978812792098991649621794052, −2.20748240143061753258331766481, −1.72485466471773689071701137038, −1.62878320960489286324611836570, −1.07790855338856607295580208404, −0.70270372243540103495744237347, −0.29728786178881295080083415122, 0.29728786178881295080083415122, 0.70270372243540103495744237347, 1.07790855338856607295580208404, 1.62878320960489286324611836570, 1.72485466471773689071701137038, 2.20748240143061753258331766481, 2.55978812792098991649621794052, 2.69675810148719003658813852852, 3.02908369199729169047059251542, 3.08523702104777094000804289127, 3.47280489036991740611849193263, 3.65598813637919085517815423830, 3.76127281887857694234866537821, 4.14575115895809281609110128980, 4.52939095888876984804761808642, 4.88279463706779637551110078698, 5.01254380231298769648502317228, 5.10606867346599081624875237558, 5.18188101724575297175271446831, 5.32362618354005457784764931618, 5.82773742924448125433105682815, 5.91663745684891425934127487322, 6.35533789700374681779878679686, 6.39740734156041367484479555421, 6.49695746291395995806772560959

Graph of the $Z$-function along the critical line