Properties

Label 8-1190e4-1.1-c1e4-0-11
Degree $8$
Conductor $2.005\times 10^{12}$
Sign $1$
Analytic cond. $8152.60$
Root an. cond. $3.08256$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 10·4-s + 20·8-s + 3·9-s + 18·13-s + 35·16-s + 12·18-s − 2·19-s − 2·25-s + 72·26-s + 56·32-s + 30·36-s − 8·38-s + 8·43-s − 10·47-s − 2·49-s − 8·50-s + 180·52-s − 18·53-s − 18·59-s + 84·64-s + 12·67-s + 60·72-s − 20·76-s − 7·81-s − 16·83-s + 32·86-s + ⋯
L(s)  = 1  + 2.82·2-s + 5·4-s + 7.07·8-s + 9-s + 4.99·13-s + 35/4·16-s + 2.82·18-s − 0.458·19-s − 2/5·25-s + 14.1·26-s + 9.89·32-s + 5·36-s − 1.29·38-s + 1.21·43-s − 1.45·47-s − 2/7·49-s − 1.13·50-s + 24.9·52-s − 2.47·53-s − 2.34·59-s + 21/2·64-s + 1.46·67-s + 7.07·72-s − 2.29·76-s − 7/9·81-s − 1.75·83-s + 3.45·86-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 7^{4} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 7^{4} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 5^{4} \cdot 7^{4} \cdot 17^{4}\)
Sign: $1$
Analytic conductor: \(8152.60\)
Root analytic conductor: \(3.08256\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 5^{4} \cdot 7^{4} \cdot 17^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(50.18975305\)
\(L(\frac12)\) \(\approx\) \(50.18975305\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_1$ \( ( 1 - T )^{4} \)
5$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
good3$D_4\times C_2$ \( 1 - p T^{2} + 16 T^{4} - p^{3} T^{6} + p^{4} T^{8} \) 4.3.a_ad_a_q
11$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \) 4.11.a_abk_a_vu
13$D_{4}$ \( ( 1 - 9 T + 42 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \) 4.13.as_gj_abmc_gfw
19$D_{4}$ \( ( 1 + T + 34 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \) 4.19.c_cr_ec_cvs
23$D_4\times C_2$ \( 1 - 40 T^{2} + 846 T^{4} - 40 p^{2} T^{6} + p^{4} T^{8} \) 4.23.a_abo_a_bgo
29$D_4\times C_2$ \( 1 + 37 T^{2} + 796 T^{4} + 37 p^{2} T^{6} + p^{4} T^{8} \) 4.29.a_bl_a_beq
31$D_4\times C_2$ \( 1 - 115 T^{2} + 5224 T^{4} - 115 p^{2} T^{6} + p^{4} T^{8} \) 4.31.a_ael_a_hsy
37$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \) 4.37.a_afk_a_lhu
41$D_4\times C_2$ \( 1 - 32 T^{2} + 286 T^{4} - 32 p^{2} T^{6} + p^{4} T^{8} \) 4.41.a_abg_a_la
43$D_{4}$ \( ( 1 - 4 T + 22 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.43.ai_ci_aua_ifu
47$D_{4}$ \( ( 1 + 5 T + 96 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \) 4.47.k_ij_cda_xqu
53$D_{4}$ \( ( 1 + 9 T + 88 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \) 4.53.s_jx_dtq_bgme
59$D_{4}$ \( ( 1 + 9 T + 134 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \) 4.59.s_nl_fdq_bzaa
61$D_4\times C_2$ \( 1 - 167 T^{2} + 14376 T^{4} - 167 p^{2} T^{6} + p^{4} T^{8} \) 4.61.a_agl_a_vgy
67$D_{4}$ \( ( 1 - 6 T + 126 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.67.am_lc_adlc_brxm
71$D_4\times C_2$ \( 1 - 263 T^{2} + 27268 T^{4} - 263 p^{2} T^{6} + p^{4} T^{8} \) 4.71.a_akd_a_boiu
73$D_4\times C_2$ \( 1 - 79 T^{2} + 12112 T^{4} - 79 p^{2} T^{6} + p^{4} T^{8} \) 4.73.a_adb_a_rxw
79$D_4\times C_2$ \( 1 + 40 T^{2} - 2418 T^{4} + 40 p^{2} T^{6} + p^{4} T^{8} \) 4.79.a_bo_a_adpa
83$D_{4}$ \( ( 1 + 8 T + 114 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \) 4.83.q_lg_erg_cdik
89$D_{4}$ \( ( 1 - 29 T + 384 T^{2} - 29 p T^{3} + p^{2} T^{4} )^{2} \) 4.89.acg_cjx_abope_rvai
97$D_4\times C_2$ \( 1 - 287 T^{2} + 37536 T^{4} - 287 p^{2} T^{6} + p^{4} T^{8} \) 4.97.a_alb_a_cdns
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.80038643661279316039393411856, −6.42174824727889133241535113633, −6.29162296578601604915594667705, −6.28833068565171375306092832741, −6.24286556845818955563485487175, −5.74408023074737815990872906790, −5.71556044284375399472767245475, −5.55031059914493872132135177392, −5.14877067464327133446570787917, −4.73327024028700575291526488980, −4.59557479469362459148177043494, −4.49589534422908332852091281908, −4.26117357562893845102076822830, −3.96581623548054619202111947468, −3.75545479470995677164604421039, −3.34642901637349961705305251909, −3.33607653824191587358184691724, −3.22208925960849048035234144940, −3.10503027241112522513237359661, −2.24276695435536326466209891274, −2.08025894777975806749967251769, −1.72498835150788332891551979540, −1.61110676305463983165510145897, −0.993738097288097621508231177617, −0.989941302245934697889475420232, 0.989941302245934697889475420232, 0.993738097288097621508231177617, 1.61110676305463983165510145897, 1.72498835150788332891551979540, 2.08025894777975806749967251769, 2.24276695435536326466209891274, 3.10503027241112522513237359661, 3.22208925960849048035234144940, 3.33607653824191587358184691724, 3.34642901637349961705305251909, 3.75545479470995677164604421039, 3.96581623548054619202111947468, 4.26117357562893845102076822830, 4.49589534422908332852091281908, 4.59557479469362459148177043494, 4.73327024028700575291526488980, 5.14877067464327133446570787917, 5.55031059914493872132135177392, 5.71556044284375399472767245475, 5.74408023074737815990872906790, 6.24286556845818955563485487175, 6.28833068565171375306092832741, 6.29162296578601604915594667705, 6.42174824727889133241535113633, 6.80038643661279316039393411856

Graph of the $Z$-function along the critical line