Properties

Label 1190.2.c.f.1121.1
Level $1190$
Weight $2$
Character 1190.1121
Analytic conductor $9.502$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1190,2,Mod(1121,1190)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1190, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1190.1121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1190 = 2 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1190.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,4,0,0,0,4,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.50219784053\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1121.1
Root \(-2.56155i\) of defining polynomial
Character \(\chi\) \(=\) 1190.1121
Dual form 1190.2.c.f.1121.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -2.56155i q^{3} +1.00000 q^{4} +1.00000i q^{5} -2.56155i q^{6} +1.00000i q^{7} +1.00000 q^{8} -3.56155 q^{9} +1.00000i q^{10} -2.00000i q^{11} -2.56155i q^{12} +6.56155 q^{13} +1.00000i q^{14} +2.56155 q^{15} +1.00000 q^{16} -4.12311i q^{17} -3.56155 q^{18} -2.56155 q^{19} +1.00000i q^{20} +2.56155 q^{21} -2.00000i q^{22} -1.12311i q^{23} -2.56155i q^{24} -1.00000 q^{25} +6.56155 q^{26} +1.43845i q^{27} +1.00000i q^{28} -10.5616i q^{29} +2.56155 q^{30} +2.56155i q^{31} +1.00000 q^{32} -5.12311 q^{33} -4.12311i q^{34} -1.00000 q^{35} -3.56155 q^{36} -2.00000i q^{37} -2.56155 q^{38} -16.8078i q^{39} +1.00000i q^{40} +11.1231i q^{41} +2.56155 q^{42} +10.2462 q^{43} -2.00000i q^{44} -3.56155i q^{45} -1.12311i q^{46} -4.56155 q^{47} -2.56155i q^{48} -1.00000 q^{49} -1.00000 q^{50} -10.5616 q^{51} +6.56155 q^{52} +1.68466 q^{53} +1.43845i q^{54} +2.00000 q^{55} +1.00000i q^{56} +6.56155i q^{57} -10.5616i q^{58} -6.56155 q^{59} +2.56155 q^{60} -5.68466i q^{61} +2.56155i q^{62} -3.56155i q^{63} +1.00000 q^{64} +6.56155i q^{65} -5.12311 q^{66} -1.12311 q^{67} -4.12311i q^{68} -2.87689 q^{69} -1.00000 q^{70} -4.56155i q^{71} -3.56155 q^{72} +10.8078i q^{73} -2.00000i q^{74} +2.56155i q^{75} -2.56155 q^{76} +2.00000 q^{77} -16.8078i q^{78} +17.3693i q^{79} +1.00000i q^{80} -7.00000 q^{81} +11.1231i q^{82} -12.2462 q^{83} +2.56155 q^{84} +4.12311 q^{85} +10.2462 q^{86} -27.0540 q^{87} -2.00000i q^{88} +16.5616 q^{89} -3.56155i q^{90} +6.56155i q^{91} -1.12311i q^{92} +6.56155 q^{93} -4.56155 q^{94} -2.56155i q^{95} -2.56155i q^{96} +9.68466i q^{97} -1.00000 q^{98} +7.12311i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8} - 6 q^{9} + 18 q^{13} + 2 q^{15} + 4 q^{16} - 6 q^{18} - 2 q^{19} + 2 q^{21} - 4 q^{25} + 18 q^{26} + 2 q^{30} + 4 q^{32} - 4 q^{33} - 4 q^{35} - 6 q^{36} - 2 q^{38} + 2 q^{42}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1190\mathbb{Z}\right)^\times\).

\(n\) \(71\) \(171\) \(477\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) − 2.56155i − 1.47891i −0.673204 0.739457i \(-0.735083\pi\)
0.673204 0.739457i \(-0.264917\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000i 0.447214i
\(6\) − 2.56155i − 1.04575i
\(7\) 1.00000i 0.377964i
\(8\) 1.00000 0.353553
\(9\) −3.56155 −1.18718
\(10\) 1.00000i 0.316228i
\(11\) − 2.00000i − 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) − 2.56155i − 0.739457i
\(13\) 6.56155 1.81985 0.909924 0.414776i \(-0.136140\pi\)
0.909924 + 0.414776i \(0.136140\pi\)
\(14\) 1.00000i 0.267261i
\(15\) 2.56155 0.661390
\(16\) 1.00000 0.250000
\(17\) − 4.12311i − 1.00000i
\(18\) −3.56155 −0.839466
\(19\) −2.56155 −0.587661 −0.293830 0.955858i \(-0.594930\pi\)
−0.293830 + 0.955858i \(0.594930\pi\)
\(20\) 1.00000i 0.223607i
\(21\) 2.56155 0.558977
\(22\) − 2.00000i − 0.426401i
\(23\) − 1.12311i − 0.234184i −0.993121 0.117092i \(-0.962643\pi\)
0.993121 0.117092i \(-0.0373572\pi\)
\(24\) − 2.56155i − 0.522875i
\(25\) −1.00000 −0.200000
\(26\) 6.56155 1.28683
\(27\) 1.43845i 0.276829i
\(28\) 1.00000i 0.188982i
\(29\) − 10.5616i − 1.96123i −0.195942 0.980616i \(-0.562776\pi\)
0.195942 0.980616i \(-0.437224\pi\)
\(30\) 2.56155 0.467673
\(31\) 2.56155i 0.460068i 0.973183 + 0.230034i \(0.0738838\pi\)
−0.973183 + 0.230034i \(0.926116\pi\)
\(32\) 1.00000 0.176777
\(33\) −5.12311 −0.891818
\(34\) − 4.12311i − 0.707107i
\(35\) −1.00000 −0.169031
\(36\) −3.56155 −0.593592
\(37\) − 2.00000i − 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) −2.56155 −0.415539
\(39\) − 16.8078i − 2.69140i
\(40\) 1.00000i 0.158114i
\(41\) 11.1231i 1.73714i 0.495569 + 0.868569i \(0.334960\pi\)
−0.495569 + 0.868569i \(0.665040\pi\)
\(42\) 2.56155 0.395256
\(43\) 10.2462 1.56253 0.781266 0.624198i \(-0.214574\pi\)
0.781266 + 0.624198i \(0.214574\pi\)
\(44\) − 2.00000i − 0.301511i
\(45\) − 3.56155i − 0.530925i
\(46\) − 1.12311i − 0.165593i
\(47\) −4.56155 −0.665371 −0.332685 0.943038i \(-0.607955\pi\)
−0.332685 + 0.943038i \(0.607955\pi\)
\(48\) − 2.56155i − 0.369728i
\(49\) −1.00000 −0.142857
\(50\) −1.00000 −0.141421
\(51\) −10.5616 −1.47891
\(52\) 6.56155 0.909924
\(53\) 1.68466 0.231406 0.115703 0.993284i \(-0.463088\pi\)
0.115703 + 0.993284i \(0.463088\pi\)
\(54\) 1.43845i 0.195748i
\(55\) 2.00000 0.269680
\(56\) 1.00000i 0.133631i
\(57\) 6.56155i 0.869099i
\(58\) − 10.5616i − 1.38680i
\(59\) −6.56155 −0.854241 −0.427121 0.904195i \(-0.640472\pi\)
−0.427121 + 0.904195i \(0.640472\pi\)
\(60\) 2.56155 0.330695
\(61\) − 5.68466i − 0.727846i −0.931429 0.363923i \(-0.881437\pi\)
0.931429 0.363923i \(-0.118563\pi\)
\(62\) 2.56155i 0.325318i
\(63\) − 3.56155i − 0.448713i
\(64\) 1.00000 0.125000
\(65\) 6.56155i 0.813860i
\(66\) −5.12311 −0.630611
\(67\) −1.12311 −0.137209 −0.0686046 0.997644i \(-0.521855\pi\)
−0.0686046 + 0.997644i \(0.521855\pi\)
\(68\) − 4.12311i − 0.500000i
\(69\) −2.87689 −0.346337
\(70\) −1.00000 −0.119523
\(71\) − 4.56155i − 0.541357i −0.962670 0.270678i \(-0.912752\pi\)
0.962670 0.270678i \(-0.0872480\pi\)
\(72\) −3.56155 −0.419733
\(73\) 10.8078i 1.26495i 0.774580 + 0.632477i \(0.217962\pi\)
−0.774580 + 0.632477i \(0.782038\pi\)
\(74\) − 2.00000i − 0.232495i
\(75\) 2.56155i 0.295783i
\(76\) −2.56155 −0.293830
\(77\) 2.00000 0.227921
\(78\) − 16.8078i − 1.90310i
\(79\) 17.3693i 1.95420i 0.212779 + 0.977100i \(0.431749\pi\)
−0.212779 + 0.977100i \(0.568251\pi\)
\(80\) 1.00000i 0.111803i
\(81\) −7.00000 −0.777778
\(82\) 11.1231i 1.22834i
\(83\) −12.2462 −1.34420 −0.672098 0.740462i \(-0.734607\pi\)
−0.672098 + 0.740462i \(0.734607\pi\)
\(84\) 2.56155 0.279488
\(85\) 4.12311 0.447214
\(86\) 10.2462 1.10488
\(87\) −27.0540 −2.90049
\(88\) − 2.00000i − 0.213201i
\(89\) 16.5616 1.75552 0.877761 0.479100i \(-0.159037\pi\)
0.877761 + 0.479100i \(0.159037\pi\)
\(90\) − 3.56155i − 0.375421i
\(91\) 6.56155i 0.687838i
\(92\) − 1.12311i − 0.117092i
\(93\) 6.56155 0.680401
\(94\) −4.56155 −0.470488
\(95\) − 2.56155i − 0.262810i
\(96\) − 2.56155i − 0.261437i
\(97\) 9.68466i 0.983328i 0.870785 + 0.491664i \(0.163611\pi\)
−0.870785 + 0.491664i \(0.836389\pi\)
\(98\) −1.00000 −0.101015
\(99\) 7.12311i 0.715899i
\(100\) −1.00000 −0.100000
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) −10.5616 −1.04575
\(103\) −11.1231 −1.09599 −0.547996 0.836481i \(-0.684609\pi\)
−0.547996 + 0.836481i \(0.684609\pi\)
\(104\) 6.56155 0.643413
\(105\) 2.56155i 0.249982i
\(106\) 1.68466 0.163628
\(107\) 8.00000i 0.773389i 0.922208 + 0.386695i \(0.126383\pi\)
−0.922208 + 0.386695i \(0.873617\pi\)
\(108\) 1.43845i 0.138415i
\(109\) − 4.31534i − 0.413335i −0.978411 0.206667i \(-0.933738\pi\)
0.978411 0.206667i \(-0.0662618\pi\)
\(110\) 2.00000 0.190693
\(111\) −5.12311 −0.486264
\(112\) 1.00000i 0.0944911i
\(113\) − 7.43845i − 0.699750i −0.936796 0.349875i \(-0.886224\pi\)
0.936796 0.349875i \(-0.113776\pi\)
\(114\) 6.56155i 0.614546i
\(115\) 1.12311 0.104730
\(116\) − 10.5616i − 0.980616i
\(117\) −23.3693 −2.16049
\(118\) −6.56155 −0.604040
\(119\) 4.12311 0.377964
\(120\) 2.56155 0.233837
\(121\) 7.00000 0.636364
\(122\) − 5.68466i − 0.514665i
\(123\) 28.4924 2.56908
\(124\) 2.56155i 0.230034i
\(125\) − 1.00000i − 0.0894427i
\(126\) − 3.56155i − 0.317288i
\(127\) −17.9309 −1.59111 −0.795554 0.605883i \(-0.792820\pi\)
−0.795554 + 0.605883i \(0.792820\pi\)
\(128\) 1.00000 0.0883883
\(129\) − 26.2462i − 2.31085i
\(130\) 6.56155i 0.575486i
\(131\) − 4.00000i − 0.349482i −0.984614 0.174741i \(-0.944091\pi\)
0.984614 0.174741i \(-0.0559088\pi\)
\(132\) −5.12311 −0.445909
\(133\) − 2.56155i − 0.222115i
\(134\) −1.12311 −0.0970215
\(135\) −1.43845 −0.123802
\(136\) − 4.12311i − 0.353553i
\(137\) 23.1231 1.97554 0.987770 0.155917i \(-0.0498333\pi\)
0.987770 + 0.155917i \(0.0498333\pi\)
\(138\) −2.87689 −0.244898
\(139\) − 15.3693i − 1.30361i −0.758387 0.651804i \(-0.774012\pi\)
0.758387 0.651804i \(-0.225988\pi\)
\(140\) −1.00000 −0.0845154
\(141\) 11.6847i 0.984026i
\(142\) − 4.56155i − 0.382797i
\(143\) − 13.1231i − 1.09741i
\(144\) −3.56155 −0.296796
\(145\) 10.5616 0.877089
\(146\) 10.8078i 0.894457i
\(147\) 2.56155i 0.211273i
\(148\) − 2.00000i − 0.164399i
\(149\) −8.24621 −0.675556 −0.337778 0.941226i \(-0.609675\pi\)
−0.337778 + 0.941226i \(0.609675\pi\)
\(150\) 2.56155i 0.209150i
\(151\) 17.6155 1.43353 0.716766 0.697314i \(-0.245622\pi\)
0.716766 + 0.697314i \(0.245622\pi\)
\(152\) −2.56155 −0.207769
\(153\) 14.6847i 1.18718i
\(154\) 2.00000 0.161165
\(155\) −2.56155 −0.205749
\(156\) − 16.8078i − 1.34570i
\(157\) −7.36932 −0.588136 −0.294068 0.955785i \(-0.595009\pi\)
−0.294068 + 0.955785i \(0.595009\pi\)
\(158\) 17.3693i 1.38183i
\(159\) − 4.31534i − 0.342229i
\(160\) 1.00000i 0.0790569i
\(161\) 1.12311 0.0885131
\(162\) −7.00000 −0.549972
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 11.1231i 0.868569i
\(165\) − 5.12311i − 0.398833i
\(166\) −12.2462 −0.950490
\(167\) 23.3693i 1.80837i 0.427139 + 0.904186i \(0.359522\pi\)
−0.427139 + 0.904186i \(0.640478\pi\)
\(168\) 2.56155 0.197628
\(169\) 30.0540 2.31184
\(170\) 4.12311 0.316228
\(171\) 9.12311 0.697661
\(172\) 10.2462 0.781266
\(173\) 16.2462i 1.23518i 0.786502 + 0.617588i \(0.211890\pi\)
−0.786502 + 0.617588i \(0.788110\pi\)
\(174\) −27.0540 −2.05096
\(175\) − 1.00000i − 0.0755929i
\(176\) − 2.00000i − 0.150756i
\(177\) 16.8078i 1.26335i
\(178\) 16.5616 1.24134
\(179\) −1.75379 −0.131084 −0.0655422 0.997850i \(-0.520878\pi\)
−0.0655422 + 0.997850i \(0.520878\pi\)
\(180\) − 3.56155i − 0.265462i
\(181\) 22.4924i 1.67185i 0.548845 + 0.835924i \(0.315068\pi\)
−0.548845 + 0.835924i \(0.684932\pi\)
\(182\) 6.56155i 0.486375i
\(183\) −14.5616 −1.07642
\(184\) − 1.12311i − 0.0827964i
\(185\) 2.00000 0.147043
\(186\) 6.56155 0.481116
\(187\) −8.24621 −0.603023
\(188\) −4.56155 −0.332685
\(189\) −1.43845 −0.104632
\(190\) − 2.56155i − 0.185835i
\(191\) 13.1231 0.949555 0.474777 0.880106i \(-0.342529\pi\)
0.474777 + 0.880106i \(0.342529\pi\)
\(192\) − 2.56155i − 0.184864i
\(193\) 22.4924i 1.61904i 0.587092 + 0.809520i \(0.300273\pi\)
−0.587092 + 0.809520i \(0.699727\pi\)
\(194\) 9.68466i 0.695318i
\(195\) 16.8078 1.20363
\(196\) −1.00000 −0.0714286
\(197\) − 10.0000i − 0.712470i −0.934396 0.356235i \(-0.884060\pi\)
0.934396 0.356235i \(-0.115940\pi\)
\(198\) 7.12311i 0.506217i
\(199\) 1.43845i 0.101969i 0.998699 + 0.0509844i \(0.0162359\pi\)
−0.998699 + 0.0509844i \(0.983764\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 2.87689i 0.202920i
\(202\) 10.0000 0.703598
\(203\) 10.5616 0.741276
\(204\) −10.5616 −0.739457
\(205\) −11.1231 −0.776871
\(206\) −11.1231 −0.774983
\(207\) 4.00000i 0.278019i
\(208\) 6.56155 0.454962
\(209\) 5.12311i 0.354373i
\(210\) 2.56155i 0.176764i
\(211\) − 22.0000i − 1.51454i −0.653101 0.757271i \(-0.726532\pi\)
0.653101 0.757271i \(-0.273468\pi\)
\(212\) 1.68466 0.115703
\(213\) −11.6847 −0.800620
\(214\) 8.00000i 0.546869i
\(215\) 10.2462i 0.698786i
\(216\) 1.43845i 0.0978739i
\(217\) −2.56155 −0.173890
\(218\) − 4.31534i − 0.292272i
\(219\) 27.6847 1.87076
\(220\) 2.00000 0.134840
\(221\) − 27.0540i − 1.81985i
\(222\) −5.12311 −0.343840
\(223\) −2.31534 −0.155047 −0.0775234 0.996991i \(-0.524701\pi\)
−0.0775234 + 0.996991i \(0.524701\pi\)
\(224\) 1.00000i 0.0668153i
\(225\) 3.56155 0.237437
\(226\) − 7.43845i − 0.494798i
\(227\) 17.9309i 1.19011i 0.803684 + 0.595057i \(0.202870\pi\)
−0.803684 + 0.595057i \(0.797130\pi\)
\(228\) 6.56155i 0.434549i
\(229\) −1.36932 −0.0904870 −0.0452435 0.998976i \(-0.514406\pi\)
−0.0452435 + 0.998976i \(0.514406\pi\)
\(230\) 1.12311 0.0740554
\(231\) − 5.12311i − 0.337076i
\(232\) − 10.5616i − 0.693400i
\(233\) − 2.80776i − 0.183943i −0.995762 0.0919714i \(-0.970683\pi\)
0.995762 0.0919714i \(-0.0293168\pi\)
\(234\) −23.3693 −1.52770
\(235\) − 4.56155i − 0.297563i
\(236\) −6.56155 −0.427121
\(237\) 44.4924 2.89009
\(238\) 4.12311 0.267261
\(239\) −12.4924 −0.808068 −0.404034 0.914744i \(-0.632392\pi\)
−0.404034 + 0.914744i \(0.632392\pi\)
\(240\) 2.56155 0.165348
\(241\) 1.36932i 0.0882055i 0.999027 + 0.0441027i \(0.0140429\pi\)
−0.999027 + 0.0441027i \(0.985957\pi\)
\(242\) 7.00000 0.449977
\(243\) 22.2462i 1.42710i
\(244\) − 5.68466i − 0.363923i
\(245\) − 1.00000i − 0.0638877i
\(246\) 28.4924 1.81661
\(247\) −16.8078 −1.06945
\(248\) 2.56155i 0.162659i
\(249\) 31.3693i 1.98795i
\(250\) − 1.00000i − 0.0632456i
\(251\) 12.4924 0.788515 0.394257 0.919000i \(-0.371002\pi\)
0.394257 + 0.919000i \(0.371002\pi\)
\(252\) − 3.56155i − 0.224357i
\(253\) −2.24621 −0.141218
\(254\) −17.9309 −1.12508
\(255\) − 10.5616i − 0.661390i
\(256\) 1.00000 0.0625000
\(257\) −18.2462 −1.13817 −0.569084 0.822280i \(-0.692702\pi\)
−0.569084 + 0.822280i \(0.692702\pi\)
\(258\) − 26.2462i − 1.63402i
\(259\) 2.00000 0.124274
\(260\) 6.56155i 0.406930i
\(261\) 37.6155i 2.32834i
\(262\) − 4.00000i − 0.247121i
\(263\) 11.6847 0.720507 0.360253 0.932854i \(-0.382690\pi\)
0.360253 + 0.932854i \(0.382690\pi\)
\(264\) −5.12311 −0.315305
\(265\) 1.68466i 0.103488i
\(266\) − 2.56155i − 0.157059i
\(267\) − 42.4233i − 2.59626i
\(268\) −1.12311 −0.0686046
\(269\) 5.68466i 0.346600i 0.984869 + 0.173300i \(0.0554430\pi\)
−0.984869 + 0.173300i \(0.944557\pi\)
\(270\) −1.43845 −0.0875411
\(271\) −14.2462 −0.865396 −0.432698 0.901539i \(-0.642438\pi\)
−0.432698 + 0.901539i \(0.642438\pi\)
\(272\) − 4.12311i − 0.250000i
\(273\) 16.8078 1.01725
\(274\) 23.1231 1.39692
\(275\) 2.00000i 0.120605i
\(276\) −2.87689 −0.173169
\(277\) − 3.75379i − 0.225543i −0.993621 0.112772i \(-0.964027\pi\)
0.993621 0.112772i \(-0.0359729\pi\)
\(278\) − 15.3693i − 0.921790i
\(279\) − 9.12311i − 0.546186i
\(280\) −1.00000 −0.0597614
\(281\) −6.31534 −0.376742 −0.188371 0.982098i \(-0.560321\pi\)
−0.188371 + 0.982098i \(0.560321\pi\)
\(282\) 11.6847i 0.695811i
\(283\) 7.68466i 0.456806i 0.973567 + 0.228403i \(0.0733503\pi\)
−0.973567 + 0.228403i \(0.926650\pi\)
\(284\) − 4.56155i − 0.270678i
\(285\) −6.56155 −0.388673
\(286\) − 13.1231i − 0.775986i
\(287\) −11.1231 −0.656576
\(288\) −3.56155 −0.209867
\(289\) −17.0000 −1.00000
\(290\) 10.5616 0.620196
\(291\) 24.8078 1.45426
\(292\) 10.8078i 0.632477i
\(293\) 9.93087 0.580168 0.290084 0.957001i \(-0.406317\pi\)
0.290084 + 0.957001i \(0.406317\pi\)
\(294\) 2.56155i 0.149393i
\(295\) − 6.56155i − 0.382028i
\(296\) − 2.00000i − 0.116248i
\(297\) 2.87689 0.166934
\(298\) −8.24621 −0.477690
\(299\) − 7.36932i − 0.426179i
\(300\) 2.56155i 0.147891i
\(301\) 10.2462i 0.590582i
\(302\) 17.6155 1.01366
\(303\) − 25.6155i − 1.47157i
\(304\) −2.56155 −0.146915
\(305\) 5.68466 0.325503
\(306\) 14.6847i 0.839466i
\(307\) −22.4924 −1.28371 −0.641855 0.766826i \(-0.721835\pi\)
−0.641855 + 0.766826i \(0.721835\pi\)
\(308\) 2.00000 0.113961
\(309\) 28.4924i 1.62088i
\(310\) −2.56155 −0.145486
\(311\) − 22.2462i − 1.26147i −0.776000 0.630733i \(-0.782754\pi\)
0.776000 0.630733i \(-0.217246\pi\)
\(312\) − 16.8078i − 0.951552i
\(313\) 16.2462i 0.918290i 0.888361 + 0.459145i \(0.151844\pi\)
−0.888361 + 0.459145i \(0.848156\pi\)
\(314\) −7.36932 −0.415875
\(315\) 3.56155 0.200671
\(316\) 17.3693i 0.977100i
\(317\) 1.36932i 0.0769085i 0.999260 + 0.0384542i \(0.0122434\pi\)
−0.999260 + 0.0384542i \(0.987757\pi\)
\(318\) − 4.31534i − 0.241992i
\(319\) −21.1231 −1.18267
\(320\) 1.00000i 0.0559017i
\(321\) 20.4924 1.14378
\(322\) 1.12311 0.0625882
\(323\) 10.5616i 0.587661i
\(324\) −7.00000 −0.388889
\(325\) −6.56155 −0.363969
\(326\) 4.00000i 0.221540i
\(327\) −11.0540 −0.611286
\(328\) 11.1231i 0.614171i
\(329\) − 4.56155i − 0.251487i
\(330\) − 5.12311i − 0.282018i
\(331\) 18.5616 1.02024 0.510118 0.860105i \(-0.329602\pi\)
0.510118 + 0.860105i \(0.329602\pi\)
\(332\) −12.2462 −0.672098
\(333\) 7.12311i 0.390344i
\(334\) 23.3693i 1.27871i
\(335\) − 1.12311i − 0.0613618i
\(336\) 2.56155 0.139744
\(337\) 24.5616i 1.33795i 0.743284 + 0.668977i \(0.233267\pi\)
−0.743284 + 0.668977i \(0.766733\pi\)
\(338\) 30.0540 1.63472
\(339\) −19.0540 −1.03487
\(340\) 4.12311 0.223607
\(341\) 5.12311 0.277432
\(342\) 9.12311 0.493321
\(343\) − 1.00000i − 0.0539949i
\(344\) 10.2462 0.552439
\(345\) − 2.87689i − 0.154887i
\(346\) 16.2462i 0.873402i
\(347\) 14.5616i 0.781705i 0.920453 + 0.390853i \(0.127820\pi\)
−0.920453 + 0.390853i \(0.872180\pi\)
\(348\) −27.0540 −1.45025
\(349\) −0.876894 −0.0469391 −0.0234695 0.999725i \(-0.507471\pi\)
−0.0234695 + 0.999725i \(0.507471\pi\)
\(350\) − 1.00000i − 0.0534522i
\(351\) 9.43845i 0.503787i
\(352\) − 2.00000i − 0.106600i
\(353\) −13.1231 −0.698472 −0.349236 0.937035i \(-0.613559\pi\)
−0.349236 + 0.937035i \(0.613559\pi\)
\(354\) 16.8078i 0.893323i
\(355\) 4.56155 0.242102
\(356\) 16.5616 0.877761
\(357\) − 10.5616i − 0.558977i
\(358\) −1.75379 −0.0926906
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) − 3.56155i − 0.187710i
\(361\) −12.4384 −0.654655
\(362\) 22.4924i 1.18218i
\(363\) − 17.9309i − 0.941127i
\(364\) 6.56155i 0.343919i
\(365\) −10.8078 −0.565704
\(366\) −14.5616 −0.761145
\(367\) − 17.6155i − 0.919523i −0.888042 0.459762i \(-0.847935\pi\)
0.888042 0.459762i \(-0.152065\pi\)
\(368\) − 1.12311i − 0.0585459i
\(369\) − 39.6155i − 2.06230i
\(370\) 2.00000 0.103975
\(371\) 1.68466i 0.0874631i
\(372\) 6.56155 0.340201
\(373\) −2.49242 −0.129053 −0.0645264 0.997916i \(-0.520554\pi\)
−0.0645264 + 0.997916i \(0.520554\pi\)
\(374\) −8.24621 −0.426401
\(375\) −2.56155 −0.132278
\(376\) −4.56155 −0.235244
\(377\) − 69.3002i − 3.56914i
\(378\) −1.43845 −0.0739857
\(379\) 15.6155i 0.802116i 0.916053 + 0.401058i \(0.131357\pi\)
−0.916053 + 0.401058i \(0.868643\pi\)
\(380\) − 2.56155i − 0.131405i
\(381\) 45.9309i 2.35311i
\(382\) 13.1231 0.671436
\(383\) −30.8078 −1.57420 −0.787102 0.616823i \(-0.788419\pi\)
−0.787102 + 0.616823i \(0.788419\pi\)
\(384\) − 2.56155i − 0.130719i
\(385\) 2.00000i 0.101929i
\(386\) 22.4924i 1.14483i
\(387\) −36.4924 −1.85501
\(388\) 9.68466i 0.491664i
\(389\) −23.1231 −1.17239 −0.586194 0.810171i \(-0.699374\pi\)
−0.586194 + 0.810171i \(0.699374\pi\)
\(390\) 16.8078 0.851094
\(391\) −4.63068 −0.234184
\(392\) −1.00000 −0.0505076
\(393\) −10.2462 −0.516853
\(394\) − 10.0000i − 0.503793i
\(395\) −17.3693 −0.873945
\(396\) 7.12311i 0.357950i
\(397\) − 2.63068i − 0.132030i −0.997819 0.0660151i \(-0.978971\pi\)
0.997819 0.0660151i \(-0.0210286\pi\)
\(398\) 1.43845i 0.0721028i
\(399\) −6.56155 −0.328489
\(400\) −1.00000 −0.0500000
\(401\) − 26.7386i − 1.33526i −0.744492 0.667632i \(-0.767308\pi\)
0.744492 0.667632i \(-0.232692\pi\)
\(402\) 2.87689i 0.143486i
\(403\) 16.8078i 0.837254i
\(404\) 10.0000 0.497519
\(405\) − 7.00000i − 0.347833i
\(406\) 10.5616 0.524161
\(407\) −4.00000 −0.198273
\(408\) −10.5616 −0.522875
\(409\) −4.56155 −0.225554 −0.112777 0.993620i \(-0.535975\pi\)
−0.112777 + 0.993620i \(0.535975\pi\)
\(410\) −11.1231 −0.549331
\(411\) − 59.2311i − 2.92165i
\(412\) −11.1231 −0.547996
\(413\) − 6.56155i − 0.322873i
\(414\) 4.00000i 0.196589i
\(415\) − 12.2462i − 0.601143i
\(416\) 6.56155 0.321707
\(417\) −39.3693 −1.92792
\(418\) 5.12311i 0.250579i
\(419\) 6.87689i 0.335958i 0.985791 + 0.167979i \(0.0537241\pi\)
−0.985791 + 0.167979i \(0.946276\pi\)
\(420\) 2.56155i 0.124991i
\(421\) 20.7386 1.01074 0.505370 0.862903i \(-0.331356\pi\)
0.505370 + 0.862903i \(0.331356\pi\)
\(422\) − 22.0000i − 1.07094i
\(423\) 16.2462 0.789918
\(424\) 1.68466 0.0818142
\(425\) 4.12311i 0.200000i
\(426\) −11.6847 −0.566124
\(427\) 5.68466 0.275100
\(428\) 8.00000i 0.386695i
\(429\) −33.6155 −1.62297
\(430\) 10.2462i 0.494116i
\(431\) − 9.36932i − 0.451304i −0.974208 0.225652i \(-0.927549\pi\)
0.974208 0.225652i \(-0.0724512\pi\)
\(432\) 1.43845i 0.0692073i
\(433\) 18.7386 0.900521 0.450261 0.892897i \(-0.351331\pi\)
0.450261 + 0.892897i \(0.351331\pi\)
\(434\) −2.56155 −0.122958
\(435\) − 27.0540i − 1.29714i
\(436\) − 4.31534i − 0.206667i
\(437\) 2.87689i 0.137621i
\(438\) 27.6847 1.32282
\(439\) 24.0000i 1.14546i 0.819745 + 0.572729i \(0.194115\pi\)
−0.819745 + 0.572729i \(0.805885\pi\)
\(440\) 2.00000 0.0953463
\(441\) 3.56155 0.169598
\(442\) − 27.0540i − 1.28683i
\(443\) 8.00000 0.380091 0.190046 0.981775i \(-0.439136\pi\)
0.190046 + 0.981775i \(0.439136\pi\)
\(444\) −5.12311 −0.243132
\(445\) 16.5616i 0.785093i
\(446\) −2.31534 −0.109635
\(447\) 21.1231i 0.999089i
\(448\) 1.00000i 0.0472456i
\(449\) 10.8769i 0.513312i 0.966503 + 0.256656i \(0.0826208\pi\)
−0.966503 + 0.256656i \(0.917379\pi\)
\(450\) 3.56155 0.167893
\(451\) 22.2462 1.04753
\(452\) − 7.43845i − 0.349875i
\(453\) − 45.1231i − 2.12007i
\(454\) 17.9309i 0.841537i
\(455\) −6.56155 −0.307610
\(456\) 6.56155i 0.307273i
\(457\) −40.1080 −1.87617 −0.938085 0.346404i \(-0.887403\pi\)
−0.938085 + 0.346404i \(0.887403\pi\)
\(458\) −1.36932 −0.0639840
\(459\) 5.93087 0.276829
\(460\) 1.12311 0.0523651
\(461\) −15.7538 −0.733727 −0.366864 0.930275i \(-0.619568\pi\)
−0.366864 + 0.930275i \(0.619568\pi\)
\(462\) − 5.12311i − 0.238348i
\(463\) 15.0540 0.699618 0.349809 0.936821i \(-0.386247\pi\)
0.349809 + 0.936821i \(0.386247\pi\)
\(464\) − 10.5616i − 0.490308i
\(465\) 6.56155i 0.304285i
\(466\) − 2.80776i − 0.130067i
\(467\) 14.0000 0.647843 0.323921 0.946084i \(-0.394999\pi\)
0.323921 + 0.946084i \(0.394999\pi\)
\(468\) −23.3693 −1.08025
\(469\) − 1.12311i − 0.0518602i
\(470\) − 4.56155i − 0.210409i
\(471\) 18.8769i 0.869801i
\(472\) −6.56155 −0.302020
\(473\) − 20.4924i − 0.942243i
\(474\) 44.4924 2.04360
\(475\) 2.56155 0.117532
\(476\) 4.12311 0.188982
\(477\) −6.00000 −0.274721
\(478\) −12.4924 −0.571390
\(479\) 7.19224i 0.328622i 0.986409 + 0.164311i \(0.0525400\pi\)
−0.986409 + 0.164311i \(0.947460\pi\)
\(480\) 2.56155 0.116918
\(481\) − 13.1231i − 0.598362i
\(482\) 1.36932i 0.0623707i
\(483\) − 2.87689i − 0.130903i
\(484\) 7.00000 0.318182
\(485\) −9.68466 −0.439758
\(486\) 22.2462i 1.00911i
\(487\) − 9.75379i − 0.441986i −0.975275 0.220993i \(-0.929070\pi\)
0.975275 0.220993i \(-0.0709299\pi\)
\(488\) − 5.68466i − 0.257332i
\(489\) 10.2462 0.463350
\(490\) − 1.00000i − 0.0451754i
\(491\) −28.1771 −1.27161 −0.635807 0.771848i \(-0.719333\pi\)
−0.635807 + 0.771848i \(0.719333\pi\)
\(492\) 28.4924 1.28454
\(493\) −43.5464 −1.96123
\(494\) −16.8078 −0.756217
\(495\) −7.12311 −0.320160
\(496\) 2.56155i 0.115017i
\(497\) 4.56155 0.204614
\(498\) 31.3693i 1.40569i
\(499\) − 13.3693i − 0.598493i −0.954176 0.299246i \(-0.903265\pi\)
0.954176 0.299246i \(-0.0967353\pi\)
\(500\) − 1.00000i − 0.0447214i
\(501\) 59.8617 2.67443
\(502\) 12.4924 0.557564
\(503\) − 22.7386i − 1.01387i −0.861986 0.506933i \(-0.830779\pi\)
0.861986 0.506933i \(-0.169221\pi\)
\(504\) − 3.56155i − 0.158644i
\(505\) 10.0000i 0.444994i
\(506\) −2.24621 −0.0998563
\(507\) − 76.9848i − 3.41902i
\(508\) −17.9309 −0.795554
\(509\) 28.8769 1.27995 0.639973 0.768397i \(-0.278946\pi\)
0.639973 + 0.768397i \(0.278946\pi\)
\(510\) − 10.5616i − 0.467673i
\(511\) −10.8078 −0.478107
\(512\) 1.00000 0.0441942
\(513\) − 3.68466i − 0.162682i
\(514\) −18.2462 −0.804806
\(515\) − 11.1231i − 0.490143i
\(516\) − 26.2462i − 1.15543i
\(517\) 9.12311i 0.401234i
\(518\) 2.00000 0.0878750
\(519\) 41.6155 1.82672
\(520\) 6.56155i 0.287743i
\(521\) − 3.12311i − 0.136826i −0.997657 0.0684129i \(-0.978206\pi\)
0.997657 0.0684129i \(-0.0217935\pi\)
\(522\) 37.6155i 1.64639i
\(523\) 6.49242 0.283894 0.141947 0.989874i \(-0.454664\pi\)
0.141947 + 0.989874i \(0.454664\pi\)
\(524\) − 4.00000i − 0.174741i
\(525\) −2.56155 −0.111795
\(526\) 11.6847 0.509475
\(527\) 10.5616 0.460068
\(528\) −5.12311 −0.222955
\(529\) 21.7386 0.945158
\(530\) 1.68466i 0.0731769i
\(531\) 23.3693 1.01414
\(532\) − 2.56155i − 0.111057i
\(533\) 72.9848i 3.16132i
\(534\) − 42.4233i − 1.83584i
\(535\) −8.00000 −0.345870
\(536\) −1.12311 −0.0485108
\(537\) 4.49242i 0.193862i
\(538\) 5.68466i 0.245083i
\(539\) 2.00000i 0.0861461i
\(540\) −1.43845 −0.0619009
\(541\) 31.8617i 1.36984i 0.728617 + 0.684922i \(0.240164\pi\)
−0.728617 + 0.684922i \(0.759836\pi\)
\(542\) −14.2462 −0.611927
\(543\) 57.6155 2.47252
\(544\) − 4.12311i − 0.176777i
\(545\) 4.31534 0.184849
\(546\) 16.8078 0.719306
\(547\) − 2.56155i − 0.109524i −0.998499 0.0547620i \(-0.982560\pi\)
0.998499 0.0547620i \(-0.0174400\pi\)
\(548\) 23.1231 0.987770
\(549\) 20.2462i 0.864087i
\(550\) 2.00000i 0.0852803i
\(551\) 27.0540i 1.15254i
\(552\) −2.87689 −0.122449
\(553\) −17.3693 −0.738618
\(554\) − 3.75379i − 0.159483i
\(555\) − 5.12311i − 0.217464i
\(556\) − 15.3693i − 0.651804i
\(557\) 7.93087 0.336042 0.168021 0.985783i \(-0.446262\pi\)
0.168021 + 0.985783i \(0.446262\pi\)
\(558\) − 9.12311i − 0.386212i
\(559\) 67.2311 2.84357
\(560\) −1.00000 −0.0422577
\(561\) 21.1231i 0.891818i
\(562\) −6.31534 −0.266397
\(563\) 30.4924 1.28510 0.642551 0.766243i \(-0.277876\pi\)
0.642551 + 0.766243i \(0.277876\pi\)
\(564\) 11.6847i 0.492013i
\(565\) 7.43845 0.312938
\(566\) 7.68466i 0.323010i
\(567\) − 7.00000i − 0.293972i
\(568\) − 4.56155i − 0.191399i
\(569\) −33.0540 −1.38569 −0.692847 0.721084i \(-0.743644\pi\)
−0.692847 + 0.721084i \(0.743644\pi\)
\(570\) −6.56155 −0.274833
\(571\) 7.12311i 0.298093i 0.988830 + 0.149046i \(0.0476204\pi\)
−0.988830 + 0.149046i \(0.952380\pi\)
\(572\) − 13.1231i − 0.548705i
\(573\) − 33.6155i − 1.40431i
\(574\) −11.1231 −0.464269
\(575\) 1.12311i 0.0468367i
\(576\) −3.56155 −0.148398
\(577\) −10.7386 −0.447055 −0.223528 0.974698i \(-0.571757\pi\)
−0.223528 + 0.974698i \(0.571757\pi\)
\(578\) −17.0000 −0.707107
\(579\) 57.6155 2.39442
\(580\) 10.5616 0.438545
\(581\) − 12.2462i − 0.508058i
\(582\) 24.8078 1.02831
\(583\) − 3.36932i − 0.139543i
\(584\) 10.8078i 0.447228i
\(585\) − 23.3693i − 0.966202i
\(586\) 9.93087 0.410240
\(587\) 11.7538 0.485131 0.242565 0.970135i \(-0.422011\pi\)
0.242565 + 0.970135i \(0.422011\pi\)
\(588\) 2.56155i 0.105637i
\(589\) − 6.56155i − 0.270364i
\(590\) − 6.56155i − 0.270135i
\(591\) −25.6155 −1.05368
\(592\) − 2.00000i − 0.0821995i
\(593\) −11.3693 −0.466882 −0.233441 0.972371i \(-0.574999\pi\)
−0.233441 + 0.972371i \(0.574999\pi\)
\(594\) 2.87689 0.118040
\(595\) 4.12311i 0.169031i
\(596\) −8.24621 −0.337778
\(597\) 3.68466 0.150803
\(598\) − 7.36932i − 0.301354i
\(599\) −23.3693 −0.954844 −0.477422 0.878674i \(-0.658429\pi\)
−0.477422 + 0.878674i \(0.658429\pi\)
\(600\) 2.56155i 0.104575i
\(601\) − 16.8769i − 0.688423i −0.938892 0.344211i \(-0.888146\pi\)
0.938892 0.344211i \(-0.111854\pi\)
\(602\) 10.2462i 0.417604i
\(603\) 4.00000 0.162893
\(604\) 17.6155 0.716766
\(605\) 7.00000i 0.284590i
\(606\) − 25.6155i − 1.04056i
\(607\) − 5.75379i − 0.233539i −0.993159 0.116770i \(-0.962746\pi\)
0.993159 0.116770i \(-0.0372539\pi\)
\(608\) −2.56155 −0.103885
\(609\) − 27.0540i − 1.09628i
\(610\) 5.68466 0.230165
\(611\) −29.9309 −1.21087
\(612\) 14.6847i 0.593592i
\(613\) 3.43845 0.138878 0.0694388 0.997586i \(-0.477879\pi\)
0.0694388 + 0.997586i \(0.477879\pi\)
\(614\) −22.4924 −0.907720
\(615\) 28.4924i 1.14893i
\(616\) 2.00000 0.0805823
\(617\) − 25.5464i − 1.02846i −0.857653 0.514230i \(-0.828078\pi\)
0.857653 0.514230i \(-0.171922\pi\)
\(618\) 28.4924i 1.14613i
\(619\) 21.6155i 0.868801i 0.900720 + 0.434401i \(0.143040\pi\)
−0.900720 + 0.434401i \(0.856960\pi\)
\(620\) −2.56155 −0.102874
\(621\) 1.61553 0.0648289
\(622\) − 22.2462i − 0.891992i
\(623\) 16.5616i 0.663525i
\(624\) − 16.8078i − 0.672849i
\(625\) 1.00000 0.0400000
\(626\) 16.2462i 0.649329i
\(627\) 13.1231 0.524086
\(628\) −7.36932 −0.294068
\(629\) −8.24621 −0.328798
\(630\) 3.56155 0.141896
\(631\) −13.7538 −0.547530 −0.273765 0.961797i \(-0.588269\pi\)
−0.273765 + 0.961797i \(0.588269\pi\)
\(632\) 17.3693i 0.690914i
\(633\) −56.3542 −2.23988
\(634\) 1.36932i 0.0543825i
\(635\) − 17.9309i − 0.711565i
\(636\) − 4.31534i − 0.171114i
\(637\) −6.56155 −0.259978
\(638\) −21.1231 −0.836272
\(639\) 16.2462i 0.642690i
\(640\) 1.00000i 0.0395285i
\(641\) − 9.61553i − 0.379791i −0.981804 0.189895i \(-0.939185\pi\)
0.981804 0.189895i \(-0.0608148\pi\)
\(642\) 20.4924 0.808771
\(643\) − 8.49242i − 0.334908i −0.985880 0.167454i \(-0.946445\pi\)
0.985880 0.167454i \(-0.0535546\pi\)
\(644\) 1.12311 0.0442566
\(645\) 26.2462 1.03344
\(646\) 10.5616i 0.415539i
\(647\) 35.3002 1.38779 0.693897 0.720074i \(-0.255892\pi\)
0.693897 + 0.720074i \(0.255892\pi\)
\(648\) −7.00000 −0.274986
\(649\) 13.1231i 0.515127i
\(650\) −6.56155 −0.257365
\(651\) 6.56155i 0.257168i
\(652\) 4.00000i 0.156652i
\(653\) − 24.8769i − 0.973508i −0.873539 0.486754i \(-0.838181\pi\)
0.873539 0.486754i \(-0.161819\pi\)
\(654\) −11.0540 −0.432245
\(655\) 4.00000 0.156293
\(656\) 11.1231i 0.434284i
\(657\) − 38.4924i − 1.50173i
\(658\) − 4.56155i − 0.177828i
\(659\) −15.0540 −0.586420 −0.293210 0.956048i \(-0.594723\pi\)
−0.293210 + 0.956048i \(0.594723\pi\)
\(660\) − 5.12311i − 0.199417i
\(661\) 31.1231 1.21055 0.605274 0.796017i \(-0.293063\pi\)
0.605274 + 0.796017i \(0.293063\pi\)
\(662\) 18.5616 0.721415
\(663\) −69.3002 −2.69140
\(664\) −12.2462 −0.475245
\(665\) 2.56155 0.0993328
\(666\) 7.12311i 0.276015i
\(667\) −11.8617 −0.459288
\(668\) 23.3693i 0.904186i
\(669\) 5.93087i 0.229301i
\(670\) − 1.12311i − 0.0433894i
\(671\) −11.3693 −0.438908
\(672\) 2.56155 0.0988140
\(673\) − 6.80776i − 0.262420i −0.991355 0.131210i \(-0.958114\pi\)
0.991355 0.131210i \(-0.0418862\pi\)
\(674\) 24.5616i 0.946076i
\(675\) − 1.43845i − 0.0553659i
\(676\) 30.0540 1.15592
\(677\) − 29.3693i − 1.12875i −0.825517 0.564377i \(-0.809116\pi\)
0.825517 0.564377i \(-0.190884\pi\)
\(678\) −19.0540 −0.731764
\(679\) −9.68466 −0.371663
\(680\) 4.12311 0.158114
\(681\) 45.9309 1.76007
\(682\) 5.12311 0.196174
\(683\) 3.19224i 0.122148i 0.998133 + 0.0610738i \(0.0194525\pi\)
−0.998133 + 0.0610738i \(0.980548\pi\)
\(684\) 9.12311 0.348831
\(685\) 23.1231i 0.883488i
\(686\) − 1.00000i − 0.0381802i
\(687\) 3.50758i 0.133822i
\(688\) 10.2462 0.390633
\(689\) 11.0540 0.421123
\(690\) − 2.87689i − 0.109521i
\(691\) 16.6307i 0.632661i 0.948649 + 0.316331i \(0.102451\pi\)
−0.948649 + 0.316331i \(0.897549\pi\)
\(692\) 16.2462i 0.617588i
\(693\) −7.12311 −0.270584
\(694\) 14.5616i 0.552749i
\(695\) 15.3693 0.582991
\(696\) −27.0540 −1.02548
\(697\) 45.8617 1.73714
\(698\) −0.876894 −0.0331909
\(699\) −7.19224 −0.272035
\(700\) − 1.00000i − 0.0377964i
\(701\) 43.6155 1.64734 0.823668 0.567073i \(-0.191924\pi\)
0.823668 + 0.567073i \(0.191924\pi\)
\(702\) 9.43845i 0.356231i
\(703\) 5.12311i 0.193222i
\(704\) − 2.00000i − 0.0753778i
\(705\) −11.6847 −0.440070
\(706\) −13.1231 −0.493895
\(707\) 10.0000i 0.376089i
\(708\) 16.8078i 0.631674i
\(709\) − 12.8078i − 0.481006i −0.970648 0.240503i \(-0.922688\pi\)
0.970648 0.240503i \(-0.0773123\pi\)
\(710\) 4.56155 0.171192
\(711\) − 61.8617i − 2.32000i
\(712\) 16.5616 0.620670
\(713\) 2.87689 0.107741
\(714\) − 10.5616i − 0.395256i
\(715\) 13.1231 0.490776
\(716\) −1.75379 −0.0655422
\(717\) 32.0000i 1.19506i
\(718\) −8.00000 −0.298557
\(719\) − 32.1771i − 1.20000i −0.799999 0.600001i \(-0.795167\pi\)
0.799999 0.600001i \(-0.204833\pi\)
\(720\) − 3.56155i − 0.132731i
\(721\) − 11.1231i − 0.414246i
\(722\) −12.4384 −0.462911
\(723\) 3.50758 0.130448
\(724\) 22.4924i 0.835924i
\(725\) 10.5616i 0.392246i
\(726\) − 17.9309i − 0.665477i
\(727\) 16.4233 0.609106 0.304553 0.952495i \(-0.401493\pi\)
0.304553 + 0.952495i \(0.401493\pi\)
\(728\) 6.56155i 0.243187i
\(729\) 35.9848 1.33277
\(730\) −10.8078 −0.400013
\(731\) − 42.2462i − 1.56253i
\(732\) −14.5616 −0.538210
\(733\) −33.6155 −1.24162 −0.620809 0.783962i \(-0.713196\pi\)
−0.620809 + 0.783962i \(0.713196\pi\)
\(734\) − 17.6155i − 0.650201i
\(735\) −2.56155 −0.0944843
\(736\) − 1.12311i − 0.0413982i
\(737\) 2.24621i 0.0827403i
\(738\) − 39.6155i − 1.45827i
\(739\) −9.93087 −0.365313 −0.182656 0.983177i \(-0.558470\pi\)
−0.182656 + 0.983177i \(0.558470\pi\)
\(740\) 2.00000 0.0735215
\(741\) 43.0540i 1.58163i
\(742\) 1.68466i 0.0618458i
\(743\) − 42.2462i − 1.54986i −0.632045 0.774932i \(-0.717784\pi\)
0.632045 0.774932i \(-0.282216\pi\)
\(744\) 6.56155 0.240558
\(745\) − 8.24621i − 0.302118i
\(746\) −2.49242 −0.0912541
\(747\) 43.6155 1.59581
\(748\) −8.24621 −0.301511
\(749\) −8.00000 −0.292314
\(750\) −2.56155 −0.0935347
\(751\) − 45.6847i − 1.66706i −0.552477 0.833528i \(-0.686317\pi\)
0.552477 0.833528i \(-0.313683\pi\)
\(752\) −4.56155 −0.166343
\(753\) − 32.0000i − 1.16614i
\(754\) − 69.3002i − 2.52376i
\(755\) 17.6155i 0.641095i
\(756\) −1.43845 −0.0523158
\(757\) −44.4233 −1.61459 −0.807296 0.590147i \(-0.799070\pi\)
−0.807296 + 0.590147i \(0.799070\pi\)
\(758\) 15.6155i 0.567182i
\(759\) 5.75379i 0.208849i
\(760\) − 2.56155i − 0.0929173i
\(761\) −26.0000 −0.942499 −0.471250 0.882000i \(-0.656197\pi\)
−0.471250 + 0.882000i \(0.656197\pi\)
\(762\) 45.9309i 1.66390i
\(763\) 4.31534 0.156226
\(764\) 13.1231 0.474777
\(765\) −14.6847 −0.530925
\(766\) −30.8078 −1.11313
\(767\) −43.0540 −1.55459
\(768\) − 2.56155i − 0.0924321i
\(769\) 38.6695 1.39446 0.697229 0.716848i \(-0.254416\pi\)
0.697229 + 0.716848i \(0.254416\pi\)
\(770\) 2.00000i 0.0720750i
\(771\) 46.7386i 1.68325i
\(772\) 22.4924i 0.809520i
\(773\) 38.1080 1.37065 0.685324 0.728238i \(-0.259661\pi\)
0.685324 + 0.728238i \(0.259661\pi\)
\(774\) −36.4924 −1.31169
\(775\) − 2.56155i − 0.0920137i
\(776\) 9.68466i 0.347659i
\(777\) − 5.12311i − 0.183790i
\(778\) −23.1231 −0.829004
\(779\) − 28.4924i − 1.02085i
\(780\) 16.8078 0.601814
\(781\) −9.12311 −0.326450
\(782\) −4.63068 −0.165593
\(783\) 15.1922 0.542926
\(784\) −1.00000 −0.0357143
\(785\) − 7.36932i − 0.263022i
\(786\) −10.2462 −0.365470
\(787\) 27.1922i 0.969299i 0.874709 + 0.484649i \(0.161053\pi\)
−0.874709 + 0.484649i \(0.838947\pi\)
\(788\) − 10.0000i − 0.356235i
\(789\) − 29.9309i − 1.06557i
\(790\) −17.3693 −0.617973
\(791\) 7.43845 0.264481
\(792\) 7.12311i 0.253109i
\(793\) − 37.3002i − 1.32457i
\(794\) − 2.63068i − 0.0933595i
\(795\) 4.31534 0.153049
\(796\) 1.43845i 0.0509844i
\(797\) −12.6307 −0.447402 −0.223701 0.974658i \(-0.571814\pi\)
−0.223701 + 0.974658i \(0.571814\pi\)
\(798\) −6.56155 −0.232276
\(799\) 18.8078i 0.665371i
\(800\) −1.00000 −0.0353553
\(801\) −58.9848 −2.08413
\(802\) − 26.7386i − 0.944174i
\(803\) 21.6155 0.762795
\(804\) 2.87689i 0.101460i
\(805\) 1.12311i 0.0395843i
\(806\) 16.8078i 0.592028i
\(807\) 14.5616 0.512591
\(808\) 10.0000 0.351799
\(809\) 36.0000i 1.26569i 0.774277 + 0.632846i \(0.218114\pi\)
−0.774277 + 0.632846i \(0.781886\pi\)
\(810\) − 7.00000i − 0.245955i
\(811\) − 44.9848i − 1.57963i −0.613344 0.789816i \(-0.710176\pi\)
0.613344 0.789816i \(-0.289824\pi\)
\(812\) 10.5616 0.370638
\(813\) 36.4924i 1.27985i
\(814\) −4.00000 −0.140200
\(815\) −4.00000 −0.140114
\(816\) −10.5616 −0.369728
\(817\) −26.2462 −0.918239
\(818\) −4.56155 −0.159491
\(819\) − 23.3693i − 0.816590i
\(820\) −11.1231 −0.388436
\(821\) − 40.1771i − 1.40219i −0.713068 0.701095i \(-0.752695\pi\)
0.713068 0.701095i \(-0.247305\pi\)
\(822\) − 59.2311i − 2.06592i
\(823\) − 0.630683i − 0.0219842i −0.999940 0.0109921i \(-0.996501\pi\)
0.999940 0.0109921i \(-0.00349897\pi\)
\(824\) −11.1231 −0.387492
\(825\) 5.12311 0.178364
\(826\) − 6.56155i − 0.228306i
\(827\) − 28.9848i − 1.00790i −0.863732 0.503951i \(-0.831879\pi\)
0.863732 0.503951i \(-0.168121\pi\)
\(828\) 4.00000i 0.139010i
\(829\) −51.6155 −1.79268 −0.896341 0.443366i \(-0.853784\pi\)
−0.896341 + 0.443366i \(0.853784\pi\)
\(830\) − 12.2462i − 0.425072i
\(831\) −9.61553 −0.333559
\(832\) 6.56155 0.227481
\(833\) 4.12311i 0.142857i
\(834\) −39.3693 −1.36325
\(835\) −23.3693 −0.808729
\(836\) 5.12311i 0.177186i
\(837\) −3.68466 −0.127360
\(838\) 6.87689i 0.237558i
\(839\) 14.5616i 0.502721i 0.967894 + 0.251360i \(0.0808779\pi\)
−0.967894 + 0.251360i \(0.919122\pi\)
\(840\) 2.56155i 0.0883820i
\(841\) −82.5464 −2.84643
\(842\) 20.7386 0.714701
\(843\) 16.1771i 0.557168i
\(844\) − 22.0000i − 0.757271i
\(845\) 30.0540i 1.03389i
\(846\) 16.2462 0.558556
\(847\) 7.00000i 0.240523i
\(848\) 1.68466 0.0578514
\(849\) 19.6847 0.675576
\(850\) 4.12311i 0.141421i
\(851\) −2.24621 −0.0769991
\(852\) −11.6847 −0.400310
\(853\) 32.1080i 1.09936i 0.835377 + 0.549678i \(0.185249\pi\)
−0.835377 + 0.549678i \(0.814751\pi\)
\(854\) 5.68466 0.194525
\(855\) 9.12311i 0.312004i
\(856\) 8.00000i 0.273434i
\(857\) − 34.6695i − 1.18429i −0.805832 0.592144i \(-0.798282\pi\)
0.805832 0.592144i \(-0.201718\pi\)
\(858\) −33.6155 −1.14762
\(859\) 44.6695 1.52410 0.762052 0.647516i \(-0.224192\pi\)
0.762052 + 0.647516i \(0.224192\pi\)
\(860\) 10.2462i 0.349393i
\(861\) 28.4924i 0.971019i
\(862\) − 9.36932i − 0.319120i
\(863\) −44.0000 −1.49778 −0.748889 0.662696i \(-0.769412\pi\)
−0.748889 + 0.662696i \(0.769412\pi\)
\(864\) 1.43845i 0.0489370i
\(865\) −16.2462 −0.552388
\(866\) 18.7386 0.636765
\(867\) 43.5464i 1.47891i
\(868\) −2.56155 −0.0869448
\(869\) 34.7386 1.17843
\(870\) − 27.0540i − 0.917216i
\(871\) −7.36932 −0.249700
\(872\) − 4.31534i − 0.146136i
\(873\) − 34.4924i − 1.16739i
\(874\) 2.87689i 0.0973124i
\(875\) 1.00000 0.0338062
\(876\) 27.6847 0.935378
\(877\) 10.9848i 0.370932i 0.982651 + 0.185466i \(0.0593794\pi\)
−0.982651 + 0.185466i \(0.940621\pi\)
\(878\) 24.0000i 0.809961i
\(879\) − 25.4384i − 0.858018i
\(880\) 2.00000 0.0674200
\(881\) − 20.2462i − 0.682112i −0.940043 0.341056i \(-0.889215\pi\)
0.940043 0.341056i \(-0.110785\pi\)
\(882\) 3.56155 0.119924
\(883\) 16.0000 0.538443 0.269221 0.963078i \(-0.413234\pi\)
0.269221 + 0.963078i \(0.413234\pi\)
\(884\) − 27.0540i − 0.909924i
\(885\) −16.8078 −0.564987
\(886\) 8.00000 0.268765
\(887\) 32.0000i 1.07445i 0.843437 + 0.537227i \(0.180528\pi\)
−0.843437 + 0.537227i \(0.819472\pi\)
\(888\) −5.12311 −0.171920
\(889\) − 17.9309i − 0.601382i
\(890\) 16.5616i 0.555145i
\(891\) 14.0000i 0.469018i
\(892\) −2.31534 −0.0775234
\(893\) 11.6847 0.391012
\(894\) 21.1231i 0.706462i
\(895\) − 1.75379i − 0.0586227i
\(896\) 1.00000i 0.0334077i
\(897\) −18.8769 −0.630281
\(898\) 10.8769i 0.362967i
\(899\) 27.0540 0.902301
\(900\) 3.56155 0.118718
\(901\) − 6.94602i − 0.231406i
\(902\) 22.2462 0.740718
\(903\) 26.2462 0.873419
\(904\) − 7.43845i − 0.247399i
\(905\) −22.4924 −0.747673
\(906\) − 45.1231i − 1.49911i
\(907\) 45.9309i 1.52511i 0.646924 + 0.762555i \(0.276055\pi\)
−0.646924 + 0.762555i \(0.723945\pi\)
\(908\) 17.9309i 0.595057i
\(909\) −35.6155 −1.18129
\(910\) −6.56155 −0.217513
\(911\) − 57.3693i − 1.90073i −0.311137 0.950365i \(-0.600710\pi\)
0.311137 0.950365i \(-0.399290\pi\)
\(912\) 6.56155i 0.217275i
\(913\) 24.4924i 0.810581i
\(914\) −40.1080 −1.32665
\(915\) − 14.5616i − 0.481390i
\(916\) −1.36932 −0.0452435
\(917\) 4.00000 0.132092
\(918\) 5.93087 0.195748
\(919\) 4.49242 0.148191 0.0740957 0.997251i \(-0.476393\pi\)
0.0740957 + 0.997251i \(0.476393\pi\)
\(920\) 1.12311 0.0370277
\(921\) 57.6155i 1.89850i
\(922\) −15.7538 −0.518823
\(923\) − 29.9309i − 0.985187i
\(924\) − 5.12311i − 0.168538i
\(925\) 2.00000i 0.0657596i
\(926\) 15.0540 0.494704
\(927\) 39.6155 1.30114
\(928\) − 10.5616i − 0.346700i
\(929\) − 33.8617i − 1.11097i −0.831527 0.555484i \(-0.812533\pi\)
0.831527 0.555484i \(-0.187467\pi\)
\(930\) 6.56155i 0.215162i
\(931\) 2.56155 0.0839515
\(932\) − 2.80776i − 0.0919714i
\(933\) −56.9848 −1.86560
\(934\) 14.0000 0.458094
\(935\) − 8.24621i − 0.269680i
\(936\) −23.3693 −0.763850
\(937\) −31.3693 −1.02479 −0.512395 0.858750i \(-0.671242\pi\)
−0.512395 + 0.858750i \(0.671242\pi\)
\(938\) − 1.12311i − 0.0366707i
\(939\) 41.6155 1.35807
\(940\) − 4.56155i − 0.148781i
\(941\) 31.4384i 1.02486i 0.858728 + 0.512432i \(0.171255\pi\)
−0.858728 + 0.512432i \(0.828745\pi\)
\(942\) 18.8769i 0.615042i
\(943\) 12.4924 0.406809
\(944\) −6.56155 −0.213560
\(945\) − 1.43845i − 0.0467927i
\(946\) − 20.4924i − 0.666266i
\(947\) 4.31534i 0.140230i 0.997539 + 0.0701149i \(0.0223366\pi\)
−0.997539 + 0.0701149i \(0.977663\pi\)
\(948\) 44.4924 1.44505
\(949\) 70.9157i 2.30202i
\(950\) 2.56155 0.0831077
\(951\) 3.50758 0.113741
\(952\) 4.12311 0.133631
\(953\) 48.2462 1.56285 0.781424 0.624000i \(-0.214494\pi\)
0.781424 + 0.624000i \(0.214494\pi\)
\(954\) −6.00000 −0.194257
\(955\) 13.1231i 0.424654i
\(956\) −12.4924 −0.404034
\(957\) 54.1080i 1.74906i
\(958\) 7.19224i 0.232371i
\(959\) 23.1231i 0.746684i
\(960\) 2.56155 0.0826738
\(961\) 24.4384 0.788337
\(962\) − 13.1231i − 0.423106i
\(963\) − 28.4924i − 0.918155i
\(964\) 1.36932i 0.0441027i
\(965\) −22.4924 −0.724057
\(966\) − 2.87689i − 0.0925626i
\(967\) 17.7538 0.570923 0.285462 0.958390i \(-0.407853\pi\)
0.285462 + 0.958390i \(0.407853\pi\)
\(968\) 7.00000 0.224989
\(969\) 27.0540 0.869099
\(970\) −9.68466 −0.310956
\(971\) −61.7926 −1.98302 −0.991510 0.130034i \(-0.958492\pi\)
−0.991510 + 0.130034i \(0.958492\pi\)
\(972\) 22.2462i 0.713548i
\(973\) 15.3693 0.492718
\(974\) − 9.75379i − 0.312532i
\(975\) 16.8078i 0.538279i
\(976\) − 5.68466i − 0.181961i
\(977\) 0.246211 0.00787700 0.00393850 0.999992i \(-0.498746\pi\)
0.00393850 + 0.999992i \(0.498746\pi\)
\(978\) 10.2462 0.327638
\(979\) − 33.1231i − 1.05862i
\(980\) − 1.00000i − 0.0319438i
\(981\) 15.3693i 0.490705i
\(982\) −28.1771 −0.899167
\(983\) 26.2462i 0.837124i 0.908188 + 0.418562i \(0.137466\pi\)
−0.908188 + 0.418562i \(0.862534\pi\)
\(984\) 28.4924 0.908305
\(985\) 10.0000 0.318626
\(986\) −43.5464 −1.38680
\(987\) −11.6847 −0.371927
\(988\) −16.8078 −0.534726
\(989\) − 11.5076i − 0.365920i
\(990\) −7.12311 −0.226387
\(991\) − 17.0540i − 0.541737i −0.962616 0.270869i \(-0.912689\pi\)
0.962616 0.270869i \(-0.0873109\pi\)
\(992\) 2.56155i 0.0813294i
\(993\) − 47.5464i − 1.50884i
\(994\) 4.56155 0.144684
\(995\) −1.43845 −0.0456018
\(996\) 31.3693i 0.993975i
\(997\) − 33.3693i − 1.05682i −0.848990 0.528408i \(-0.822789\pi\)
0.848990 0.528408i \(-0.177211\pi\)
\(998\) − 13.3693i − 0.423198i
\(999\) 2.87689 0.0910209
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1190.2.c.f.1121.1 4
17.16 even 2 inner 1190.2.c.f.1121.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1190.2.c.f.1121.1 4 1.1 even 1 trivial
1190.2.c.f.1121.4 yes 4 17.16 even 2 inner