Properties

Label 1190.2.c.f.1121.4
Level $1190$
Weight $2$
Character 1190.1121
Analytic conductor $9.502$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1190,2,Mod(1121,1190)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1190, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1190.1121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1190 = 2 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1190.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,4,0,0,0,4,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.50219784053\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1121.4
Root \(2.56155i\) of defining polynomial
Character \(\chi\) \(=\) 1190.1121
Dual form 1190.2.c.f.1121.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.56155i q^{3} +1.00000 q^{4} -1.00000i q^{5} +2.56155i q^{6} -1.00000i q^{7} +1.00000 q^{8} -3.56155 q^{9} -1.00000i q^{10} +2.00000i q^{11} +2.56155i q^{12} +6.56155 q^{13} -1.00000i q^{14} +2.56155 q^{15} +1.00000 q^{16} +4.12311i q^{17} -3.56155 q^{18} -2.56155 q^{19} -1.00000i q^{20} +2.56155 q^{21} +2.00000i q^{22} +1.12311i q^{23} +2.56155i q^{24} -1.00000 q^{25} +6.56155 q^{26} -1.43845i q^{27} -1.00000i q^{28} +10.5616i q^{29} +2.56155 q^{30} -2.56155i q^{31} +1.00000 q^{32} -5.12311 q^{33} +4.12311i q^{34} -1.00000 q^{35} -3.56155 q^{36} +2.00000i q^{37} -2.56155 q^{38} +16.8078i q^{39} -1.00000i q^{40} -11.1231i q^{41} +2.56155 q^{42} +10.2462 q^{43} +2.00000i q^{44} +3.56155i q^{45} +1.12311i q^{46} -4.56155 q^{47} +2.56155i q^{48} -1.00000 q^{49} -1.00000 q^{50} -10.5616 q^{51} +6.56155 q^{52} +1.68466 q^{53} -1.43845i q^{54} +2.00000 q^{55} -1.00000i q^{56} -6.56155i q^{57} +10.5616i q^{58} -6.56155 q^{59} +2.56155 q^{60} +5.68466i q^{61} -2.56155i q^{62} +3.56155i q^{63} +1.00000 q^{64} -6.56155i q^{65} -5.12311 q^{66} -1.12311 q^{67} +4.12311i q^{68} -2.87689 q^{69} -1.00000 q^{70} +4.56155i q^{71} -3.56155 q^{72} -10.8078i q^{73} +2.00000i q^{74} -2.56155i q^{75} -2.56155 q^{76} +2.00000 q^{77} +16.8078i q^{78} -17.3693i q^{79} -1.00000i q^{80} -7.00000 q^{81} -11.1231i q^{82} -12.2462 q^{83} +2.56155 q^{84} +4.12311 q^{85} +10.2462 q^{86} -27.0540 q^{87} +2.00000i q^{88} +16.5616 q^{89} +3.56155i q^{90} -6.56155i q^{91} +1.12311i q^{92} +6.56155 q^{93} -4.56155 q^{94} +2.56155i q^{95} +2.56155i q^{96} -9.68466i q^{97} -1.00000 q^{98} -7.12311i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8} - 6 q^{9} + 18 q^{13} + 2 q^{15} + 4 q^{16} - 6 q^{18} - 2 q^{19} + 2 q^{21} - 4 q^{25} + 18 q^{26} + 2 q^{30} + 4 q^{32} - 4 q^{33} - 4 q^{35} - 6 q^{36} - 2 q^{38} + 2 q^{42}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1190\mathbb{Z}\right)^\times\).

\(n\) \(71\) \(171\) \(477\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.56155i 1.47891i 0.673204 + 0.739457i \(0.264917\pi\)
−0.673204 + 0.739457i \(0.735083\pi\)
\(4\) 1.00000 0.500000
\(5\) − 1.00000i − 0.447214i
\(6\) 2.56155i 1.04575i
\(7\) − 1.00000i − 0.377964i
\(8\) 1.00000 0.353553
\(9\) −3.56155 −1.18718
\(10\) − 1.00000i − 0.316228i
\(11\) 2.00000i 0.603023i 0.953463 + 0.301511i \(0.0974911\pi\)
−0.953463 + 0.301511i \(0.902509\pi\)
\(12\) 2.56155i 0.739457i
\(13\) 6.56155 1.81985 0.909924 0.414776i \(-0.136140\pi\)
0.909924 + 0.414776i \(0.136140\pi\)
\(14\) − 1.00000i − 0.267261i
\(15\) 2.56155 0.661390
\(16\) 1.00000 0.250000
\(17\) 4.12311i 1.00000i
\(18\) −3.56155 −0.839466
\(19\) −2.56155 −0.587661 −0.293830 0.955858i \(-0.594930\pi\)
−0.293830 + 0.955858i \(0.594930\pi\)
\(20\) − 1.00000i − 0.223607i
\(21\) 2.56155 0.558977
\(22\) 2.00000i 0.426401i
\(23\) 1.12311i 0.234184i 0.993121 + 0.117092i \(0.0373572\pi\)
−0.993121 + 0.117092i \(0.962643\pi\)
\(24\) 2.56155i 0.522875i
\(25\) −1.00000 −0.200000
\(26\) 6.56155 1.28683
\(27\) − 1.43845i − 0.276829i
\(28\) − 1.00000i − 0.188982i
\(29\) 10.5616i 1.96123i 0.195942 + 0.980616i \(0.437224\pi\)
−0.195942 + 0.980616i \(0.562776\pi\)
\(30\) 2.56155 0.467673
\(31\) − 2.56155i − 0.460068i −0.973183 0.230034i \(-0.926116\pi\)
0.973183 0.230034i \(-0.0738838\pi\)
\(32\) 1.00000 0.176777
\(33\) −5.12311 −0.891818
\(34\) 4.12311i 0.707107i
\(35\) −1.00000 −0.169031
\(36\) −3.56155 −0.593592
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) −2.56155 −0.415539
\(39\) 16.8078i 2.69140i
\(40\) − 1.00000i − 0.158114i
\(41\) − 11.1231i − 1.73714i −0.495569 0.868569i \(-0.665040\pi\)
0.495569 0.868569i \(-0.334960\pi\)
\(42\) 2.56155 0.395256
\(43\) 10.2462 1.56253 0.781266 0.624198i \(-0.214574\pi\)
0.781266 + 0.624198i \(0.214574\pi\)
\(44\) 2.00000i 0.301511i
\(45\) 3.56155i 0.530925i
\(46\) 1.12311i 0.165593i
\(47\) −4.56155 −0.665371 −0.332685 0.943038i \(-0.607955\pi\)
−0.332685 + 0.943038i \(0.607955\pi\)
\(48\) 2.56155i 0.369728i
\(49\) −1.00000 −0.142857
\(50\) −1.00000 −0.141421
\(51\) −10.5616 −1.47891
\(52\) 6.56155 0.909924
\(53\) 1.68466 0.231406 0.115703 0.993284i \(-0.463088\pi\)
0.115703 + 0.993284i \(0.463088\pi\)
\(54\) − 1.43845i − 0.195748i
\(55\) 2.00000 0.269680
\(56\) − 1.00000i − 0.133631i
\(57\) − 6.56155i − 0.869099i
\(58\) 10.5616i 1.38680i
\(59\) −6.56155 −0.854241 −0.427121 0.904195i \(-0.640472\pi\)
−0.427121 + 0.904195i \(0.640472\pi\)
\(60\) 2.56155 0.330695
\(61\) 5.68466i 0.727846i 0.931429 + 0.363923i \(0.118563\pi\)
−0.931429 + 0.363923i \(0.881437\pi\)
\(62\) − 2.56155i − 0.325318i
\(63\) 3.56155i 0.448713i
\(64\) 1.00000 0.125000
\(65\) − 6.56155i − 0.813860i
\(66\) −5.12311 −0.630611
\(67\) −1.12311 −0.137209 −0.0686046 0.997644i \(-0.521855\pi\)
−0.0686046 + 0.997644i \(0.521855\pi\)
\(68\) 4.12311i 0.500000i
\(69\) −2.87689 −0.346337
\(70\) −1.00000 −0.119523
\(71\) 4.56155i 0.541357i 0.962670 + 0.270678i \(0.0872480\pi\)
−0.962670 + 0.270678i \(0.912752\pi\)
\(72\) −3.56155 −0.419733
\(73\) − 10.8078i − 1.26495i −0.774580 0.632477i \(-0.782038\pi\)
0.774580 0.632477i \(-0.217962\pi\)
\(74\) 2.00000i 0.232495i
\(75\) − 2.56155i − 0.295783i
\(76\) −2.56155 −0.293830
\(77\) 2.00000 0.227921
\(78\) 16.8078i 1.90310i
\(79\) − 17.3693i − 1.95420i −0.212779 0.977100i \(-0.568251\pi\)
0.212779 0.977100i \(-0.431749\pi\)
\(80\) − 1.00000i − 0.111803i
\(81\) −7.00000 −0.777778
\(82\) − 11.1231i − 1.22834i
\(83\) −12.2462 −1.34420 −0.672098 0.740462i \(-0.734607\pi\)
−0.672098 + 0.740462i \(0.734607\pi\)
\(84\) 2.56155 0.279488
\(85\) 4.12311 0.447214
\(86\) 10.2462 1.10488
\(87\) −27.0540 −2.90049
\(88\) 2.00000i 0.213201i
\(89\) 16.5616 1.75552 0.877761 0.479100i \(-0.159037\pi\)
0.877761 + 0.479100i \(0.159037\pi\)
\(90\) 3.56155i 0.375421i
\(91\) − 6.56155i − 0.687838i
\(92\) 1.12311i 0.117092i
\(93\) 6.56155 0.680401
\(94\) −4.56155 −0.470488
\(95\) 2.56155i 0.262810i
\(96\) 2.56155i 0.261437i
\(97\) − 9.68466i − 0.983328i −0.870785 0.491664i \(-0.836389\pi\)
0.870785 0.491664i \(-0.163611\pi\)
\(98\) −1.00000 −0.101015
\(99\) − 7.12311i − 0.715899i
\(100\) −1.00000 −0.100000
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) −10.5616 −1.04575
\(103\) −11.1231 −1.09599 −0.547996 0.836481i \(-0.684609\pi\)
−0.547996 + 0.836481i \(0.684609\pi\)
\(104\) 6.56155 0.643413
\(105\) − 2.56155i − 0.249982i
\(106\) 1.68466 0.163628
\(107\) − 8.00000i − 0.773389i −0.922208 0.386695i \(-0.873617\pi\)
0.922208 0.386695i \(-0.126383\pi\)
\(108\) − 1.43845i − 0.138415i
\(109\) 4.31534i 0.413335i 0.978411 + 0.206667i \(0.0662618\pi\)
−0.978411 + 0.206667i \(0.933738\pi\)
\(110\) 2.00000 0.190693
\(111\) −5.12311 −0.486264
\(112\) − 1.00000i − 0.0944911i
\(113\) 7.43845i 0.699750i 0.936796 + 0.349875i \(0.113776\pi\)
−0.936796 + 0.349875i \(0.886224\pi\)
\(114\) − 6.56155i − 0.614546i
\(115\) 1.12311 0.104730
\(116\) 10.5616i 0.980616i
\(117\) −23.3693 −2.16049
\(118\) −6.56155 −0.604040
\(119\) 4.12311 0.377964
\(120\) 2.56155 0.233837
\(121\) 7.00000 0.636364
\(122\) 5.68466i 0.514665i
\(123\) 28.4924 2.56908
\(124\) − 2.56155i − 0.230034i
\(125\) 1.00000i 0.0894427i
\(126\) 3.56155i 0.317288i
\(127\) −17.9309 −1.59111 −0.795554 0.605883i \(-0.792820\pi\)
−0.795554 + 0.605883i \(0.792820\pi\)
\(128\) 1.00000 0.0883883
\(129\) 26.2462i 2.31085i
\(130\) − 6.56155i − 0.575486i
\(131\) 4.00000i 0.349482i 0.984614 + 0.174741i \(0.0559088\pi\)
−0.984614 + 0.174741i \(0.944091\pi\)
\(132\) −5.12311 −0.445909
\(133\) 2.56155i 0.222115i
\(134\) −1.12311 −0.0970215
\(135\) −1.43845 −0.123802
\(136\) 4.12311i 0.353553i
\(137\) 23.1231 1.97554 0.987770 0.155917i \(-0.0498333\pi\)
0.987770 + 0.155917i \(0.0498333\pi\)
\(138\) −2.87689 −0.244898
\(139\) 15.3693i 1.30361i 0.758387 + 0.651804i \(0.225988\pi\)
−0.758387 + 0.651804i \(0.774012\pi\)
\(140\) −1.00000 −0.0845154
\(141\) − 11.6847i − 0.984026i
\(142\) 4.56155i 0.382797i
\(143\) 13.1231i 1.09741i
\(144\) −3.56155 −0.296796
\(145\) 10.5616 0.877089
\(146\) − 10.8078i − 0.894457i
\(147\) − 2.56155i − 0.211273i
\(148\) 2.00000i 0.164399i
\(149\) −8.24621 −0.675556 −0.337778 0.941226i \(-0.609675\pi\)
−0.337778 + 0.941226i \(0.609675\pi\)
\(150\) − 2.56155i − 0.209150i
\(151\) 17.6155 1.43353 0.716766 0.697314i \(-0.245622\pi\)
0.716766 + 0.697314i \(0.245622\pi\)
\(152\) −2.56155 −0.207769
\(153\) − 14.6847i − 1.18718i
\(154\) 2.00000 0.161165
\(155\) −2.56155 −0.205749
\(156\) 16.8078i 1.34570i
\(157\) −7.36932 −0.588136 −0.294068 0.955785i \(-0.595009\pi\)
−0.294068 + 0.955785i \(0.595009\pi\)
\(158\) − 17.3693i − 1.38183i
\(159\) 4.31534i 0.342229i
\(160\) − 1.00000i − 0.0790569i
\(161\) 1.12311 0.0885131
\(162\) −7.00000 −0.549972
\(163\) − 4.00000i − 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) − 11.1231i − 0.868569i
\(165\) 5.12311i 0.398833i
\(166\) −12.2462 −0.950490
\(167\) − 23.3693i − 1.80837i −0.427139 0.904186i \(-0.640478\pi\)
0.427139 0.904186i \(-0.359522\pi\)
\(168\) 2.56155 0.197628
\(169\) 30.0540 2.31184
\(170\) 4.12311 0.316228
\(171\) 9.12311 0.697661
\(172\) 10.2462 0.781266
\(173\) − 16.2462i − 1.23518i −0.786502 0.617588i \(-0.788110\pi\)
0.786502 0.617588i \(-0.211890\pi\)
\(174\) −27.0540 −2.05096
\(175\) 1.00000i 0.0755929i
\(176\) 2.00000i 0.150756i
\(177\) − 16.8078i − 1.26335i
\(178\) 16.5616 1.24134
\(179\) −1.75379 −0.131084 −0.0655422 0.997850i \(-0.520878\pi\)
−0.0655422 + 0.997850i \(0.520878\pi\)
\(180\) 3.56155i 0.265462i
\(181\) − 22.4924i − 1.67185i −0.548845 0.835924i \(-0.684932\pi\)
0.548845 0.835924i \(-0.315068\pi\)
\(182\) − 6.56155i − 0.486375i
\(183\) −14.5616 −1.07642
\(184\) 1.12311i 0.0827964i
\(185\) 2.00000 0.147043
\(186\) 6.56155 0.481116
\(187\) −8.24621 −0.603023
\(188\) −4.56155 −0.332685
\(189\) −1.43845 −0.104632
\(190\) 2.56155i 0.185835i
\(191\) 13.1231 0.949555 0.474777 0.880106i \(-0.342529\pi\)
0.474777 + 0.880106i \(0.342529\pi\)
\(192\) 2.56155i 0.184864i
\(193\) − 22.4924i − 1.61904i −0.587092 0.809520i \(-0.699727\pi\)
0.587092 0.809520i \(-0.300273\pi\)
\(194\) − 9.68466i − 0.695318i
\(195\) 16.8078 1.20363
\(196\) −1.00000 −0.0714286
\(197\) 10.0000i 0.712470i 0.934396 + 0.356235i \(0.115940\pi\)
−0.934396 + 0.356235i \(0.884060\pi\)
\(198\) − 7.12311i − 0.506217i
\(199\) − 1.43845i − 0.101969i −0.998699 0.0509844i \(-0.983764\pi\)
0.998699 0.0509844i \(-0.0162359\pi\)
\(200\) −1.00000 −0.0707107
\(201\) − 2.87689i − 0.202920i
\(202\) 10.0000 0.703598
\(203\) 10.5616 0.741276
\(204\) −10.5616 −0.739457
\(205\) −11.1231 −0.776871
\(206\) −11.1231 −0.774983
\(207\) − 4.00000i − 0.278019i
\(208\) 6.56155 0.454962
\(209\) − 5.12311i − 0.354373i
\(210\) − 2.56155i − 0.176764i
\(211\) 22.0000i 1.51454i 0.653101 + 0.757271i \(0.273468\pi\)
−0.653101 + 0.757271i \(0.726532\pi\)
\(212\) 1.68466 0.115703
\(213\) −11.6847 −0.800620
\(214\) − 8.00000i − 0.546869i
\(215\) − 10.2462i − 0.698786i
\(216\) − 1.43845i − 0.0978739i
\(217\) −2.56155 −0.173890
\(218\) 4.31534i 0.292272i
\(219\) 27.6847 1.87076
\(220\) 2.00000 0.134840
\(221\) 27.0540i 1.81985i
\(222\) −5.12311 −0.343840
\(223\) −2.31534 −0.155047 −0.0775234 0.996991i \(-0.524701\pi\)
−0.0775234 + 0.996991i \(0.524701\pi\)
\(224\) − 1.00000i − 0.0668153i
\(225\) 3.56155 0.237437
\(226\) 7.43845i 0.494798i
\(227\) − 17.9309i − 1.19011i −0.803684 0.595057i \(-0.797130\pi\)
0.803684 0.595057i \(-0.202870\pi\)
\(228\) − 6.56155i − 0.434549i
\(229\) −1.36932 −0.0904870 −0.0452435 0.998976i \(-0.514406\pi\)
−0.0452435 + 0.998976i \(0.514406\pi\)
\(230\) 1.12311 0.0740554
\(231\) 5.12311i 0.337076i
\(232\) 10.5616i 0.693400i
\(233\) 2.80776i 0.183943i 0.995762 + 0.0919714i \(0.0293168\pi\)
−0.995762 + 0.0919714i \(0.970683\pi\)
\(234\) −23.3693 −1.52770
\(235\) 4.56155i 0.297563i
\(236\) −6.56155 −0.427121
\(237\) 44.4924 2.89009
\(238\) 4.12311 0.267261
\(239\) −12.4924 −0.808068 −0.404034 0.914744i \(-0.632392\pi\)
−0.404034 + 0.914744i \(0.632392\pi\)
\(240\) 2.56155 0.165348
\(241\) − 1.36932i − 0.0882055i −0.999027 0.0441027i \(-0.985957\pi\)
0.999027 0.0441027i \(-0.0140429\pi\)
\(242\) 7.00000 0.449977
\(243\) − 22.2462i − 1.42710i
\(244\) 5.68466i 0.363923i
\(245\) 1.00000i 0.0638877i
\(246\) 28.4924 1.81661
\(247\) −16.8078 −1.06945
\(248\) − 2.56155i − 0.162659i
\(249\) − 31.3693i − 1.98795i
\(250\) 1.00000i 0.0632456i
\(251\) 12.4924 0.788515 0.394257 0.919000i \(-0.371002\pi\)
0.394257 + 0.919000i \(0.371002\pi\)
\(252\) 3.56155i 0.224357i
\(253\) −2.24621 −0.141218
\(254\) −17.9309 −1.12508
\(255\) 10.5616i 0.661390i
\(256\) 1.00000 0.0625000
\(257\) −18.2462 −1.13817 −0.569084 0.822280i \(-0.692702\pi\)
−0.569084 + 0.822280i \(0.692702\pi\)
\(258\) 26.2462i 1.63402i
\(259\) 2.00000 0.124274
\(260\) − 6.56155i − 0.406930i
\(261\) − 37.6155i − 2.32834i
\(262\) 4.00000i 0.247121i
\(263\) 11.6847 0.720507 0.360253 0.932854i \(-0.382690\pi\)
0.360253 + 0.932854i \(0.382690\pi\)
\(264\) −5.12311 −0.315305
\(265\) − 1.68466i − 0.103488i
\(266\) 2.56155i 0.157059i
\(267\) 42.4233i 2.59626i
\(268\) −1.12311 −0.0686046
\(269\) − 5.68466i − 0.346600i −0.984869 0.173300i \(-0.944557\pi\)
0.984869 0.173300i \(-0.0554430\pi\)
\(270\) −1.43845 −0.0875411
\(271\) −14.2462 −0.865396 −0.432698 0.901539i \(-0.642438\pi\)
−0.432698 + 0.901539i \(0.642438\pi\)
\(272\) 4.12311i 0.250000i
\(273\) 16.8078 1.01725
\(274\) 23.1231 1.39692
\(275\) − 2.00000i − 0.120605i
\(276\) −2.87689 −0.173169
\(277\) 3.75379i 0.225543i 0.993621 + 0.112772i \(0.0359729\pi\)
−0.993621 + 0.112772i \(0.964027\pi\)
\(278\) 15.3693i 0.921790i
\(279\) 9.12311i 0.546186i
\(280\) −1.00000 −0.0597614
\(281\) −6.31534 −0.376742 −0.188371 0.982098i \(-0.560321\pi\)
−0.188371 + 0.982098i \(0.560321\pi\)
\(282\) − 11.6847i − 0.695811i
\(283\) − 7.68466i − 0.456806i −0.973567 0.228403i \(-0.926650\pi\)
0.973567 0.228403i \(-0.0733503\pi\)
\(284\) 4.56155i 0.270678i
\(285\) −6.56155 −0.388673
\(286\) 13.1231i 0.775986i
\(287\) −11.1231 −0.656576
\(288\) −3.56155 −0.209867
\(289\) −17.0000 −1.00000
\(290\) 10.5616 0.620196
\(291\) 24.8078 1.45426
\(292\) − 10.8078i − 0.632477i
\(293\) 9.93087 0.580168 0.290084 0.957001i \(-0.406317\pi\)
0.290084 + 0.957001i \(0.406317\pi\)
\(294\) − 2.56155i − 0.149393i
\(295\) 6.56155i 0.382028i
\(296\) 2.00000i 0.116248i
\(297\) 2.87689 0.166934
\(298\) −8.24621 −0.477690
\(299\) 7.36932i 0.426179i
\(300\) − 2.56155i − 0.147891i
\(301\) − 10.2462i − 0.590582i
\(302\) 17.6155 1.01366
\(303\) 25.6155i 1.47157i
\(304\) −2.56155 −0.146915
\(305\) 5.68466 0.325503
\(306\) − 14.6847i − 0.839466i
\(307\) −22.4924 −1.28371 −0.641855 0.766826i \(-0.721835\pi\)
−0.641855 + 0.766826i \(0.721835\pi\)
\(308\) 2.00000 0.113961
\(309\) − 28.4924i − 1.62088i
\(310\) −2.56155 −0.145486
\(311\) 22.2462i 1.26147i 0.776000 + 0.630733i \(0.217246\pi\)
−0.776000 + 0.630733i \(0.782754\pi\)
\(312\) 16.8078i 0.951552i
\(313\) − 16.2462i − 0.918290i −0.888361 0.459145i \(-0.848156\pi\)
0.888361 0.459145i \(-0.151844\pi\)
\(314\) −7.36932 −0.415875
\(315\) 3.56155 0.200671
\(316\) − 17.3693i − 0.977100i
\(317\) − 1.36932i − 0.0769085i −0.999260 0.0384542i \(-0.987757\pi\)
0.999260 0.0384542i \(-0.0122434\pi\)
\(318\) 4.31534i 0.241992i
\(319\) −21.1231 −1.18267
\(320\) − 1.00000i − 0.0559017i
\(321\) 20.4924 1.14378
\(322\) 1.12311 0.0625882
\(323\) − 10.5616i − 0.587661i
\(324\) −7.00000 −0.388889
\(325\) −6.56155 −0.363969
\(326\) − 4.00000i − 0.221540i
\(327\) −11.0540 −0.611286
\(328\) − 11.1231i − 0.614171i
\(329\) 4.56155i 0.251487i
\(330\) 5.12311i 0.282018i
\(331\) 18.5616 1.02024 0.510118 0.860105i \(-0.329602\pi\)
0.510118 + 0.860105i \(0.329602\pi\)
\(332\) −12.2462 −0.672098
\(333\) − 7.12311i − 0.390344i
\(334\) − 23.3693i − 1.27871i
\(335\) 1.12311i 0.0613618i
\(336\) 2.56155 0.139744
\(337\) − 24.5616i − 1.33795i −0.743284 0.668977i \(-0.766733\pi\)
0.743284 0.668977i \(-0.233267\pi\)
\(338\) 30.0540 1.63472
\(339\) −19.0540 −1.03487
\(340\) 4.12311 0.223607
\(341\) 5.12311 0.277432
\(342\) 9.12311 0.493321
\(343\) 1.00000i 0.0539949i
\(344\) 10.2462 0.552439
\(345\) 2.87689i 0.154887i
\(346\) − 16.2462i − 0.873402i
\(347\) − 14.5616i − 0.781705i −0.920453 0.390853i \(-0.872180\pi\)
0.920453 0.390853i \(-0.127820\pi\)
\(348\) −27.0540 −1.45025
\(349\) −0.876894 −0.0469391 −0.0234695 0.999725i \(-0.507471\pi\)
−0.0234695 + 0.999725i \(0.507471\pi\)
\(350\) 1.00000i 0.0534522i
\(351\) − 9.43845i − 0.503787i
\(352\) 2.00000i 0.106600i
\(353\) −13.1231 −0.698472 −0.349236 0.937035i \(-0.613559\pi\)
−0.349236 + 0.937035i \(0.613559\pi\)
\(354\) − 16.8078i − 0.893323i
\(355\) 4.56155 0.242102
\(356\) 16.5616 0.877761
\(357\) 10.5616i 0.558977i
\(358\) −1.75379 −0.0926906
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 3.56155i 0.187710i
\(361\) −12.4384 −0.654655
\(362\) − 22.4924i − 1.18218i
\(363\) 17.9309i 0.941127i
\(364\) − 6.56155i − 0.343919i
\(365\) −10.8078 −0.565704
\(366\) −14.5616 −0.761145
\(367\) 17.6155i 0.919523i 0.888042 + 0.459762i \(0.152065\pi\)
−0.888042 + 0.459762i \(0.847935\pi\)
\(368\) 1.12311i 0.0585459i
\(369\) 39.6155i 2.06230i
\(370\) 2.00000 0.103975
\(371\) − 1.68466i − 0.0874631i
\(372\) 6.56155 0.340201
\(373\) −2.49242 −0.129053 −0.0645264 0.997916i \(-0.520554\pi\)
−0.0645264 + 0.997916i \(0.520554\pi\)
\(374\) −8.24621 −0.426401
\(375\) −2.56155 −0.132278
\(376\) −4.56155 −0.235244
\(377\) 69.3002i 3.56914i
\(378\) −1.43845 −0.0739857
\(379\) − 15.6155i − 0.802116i −0.916053 0.401058i \(-0.868643\pi\)
0.916053 0.401058i \(-0.131357\pi\)
\(380\) 2.56155i 0.131405i
\(381\) − 45.9309i − 2.35311i
\(382\) 13.1231 0.671436
\(383\) −30.8078 −1.57420 −0.787102 0.616823i \(-0.788419\pi\)
−0.787102 + 0.616823i \(0.788419\pi\)
\(384\) 2.56155i 0.130719i
\(385\) − 2.00000i − 0.101929i
\(386\) − 22.4924i − 1.14483i
\(387\) −36.4924 −1.85501
\(388\) − 9.68466i − 0.491664i
\(389\) −23.1231 −1.17239 −0.586194 0.810171i \(-0.699374\pi\)
−0.586194 + 0.810171i \(0.699374\pi\)
\(390\) 16.8078 0.851094
\(391\) −4.63068 −0.234184
\(392\) −1.00000 −0.0505076
\(393\) −10.2462 −0.516853
\(394\) 10.0000i 0.503793i
\(395\) −17.3693 −0.873945
\(396\) − 7.12311i − 0.357950i
\(397\) 2.63068i 0.132030i 0.997819 + 0.0660151i \(0.0210286\pi\)
−0.997819 + 0.0660151i \(0.978971\pi\)
\(398\) − 1.43845i − 0.0721028i
\(399\) −6.56155 −0.328489
\(400\) −1.00000 −0.0500000
\(401\) 26.7386i 1.33526i 0.744492 + 0.667632i \(0.232692\pi\)
−0.744492 + 0.667632i \(0.767308\pi\)
\(402\) − 2.87689i − 0.143486i
\(403\) − 16.8078i − 0.837254i
\(404\) 10.0000 0.497519
\(405\) 7.00000i 0.347833i
\(406\) 10.5616 0.524161
\(407\) −4.00000 −0.198273
\(408\) −10.5616 −0.522875
\(409\) −4.56155 −0.225554 −0.112777 0.993620i \(-0.535975\pi\)
−0.112777 + 0.993620i \(0.535975\pi\)
\(410\) −11.1231 −0.549331
\(411\) 59.2311i 2.92165i
\(412\) −11.1231 −0.547996
\(413\) 6.56155i 0.322873i
\(414\) − 4.00000i − 0.196589i
\(415\) 12.2462i 0.601143i
\(416\) 6.56155 0.321707
\(417\) −39.3693 −1.92792
\(418\) − 5.12311i − 0.250579i
\(419\) − 6.87689i − 0.335958i −0.985791 0.167979i \(-0.946276\pi\)
0.985791 0.167979i \(-0.0537241\pi\)
\(420\) − 2.56155i − 0.124991i
\(421\) 20.7386 1.01074 0.505370 0.862903i \(-0.331356\pi\)
0.505370 + 0.862903i \(0.331356\pi\)
\(422\) 22.0000i 1.07094i
\(423\) 16.2462 0.789918
\(424\) 1.68466 0.0818142
\(425\) − 4.12311i − 0.200000i
\(426\) −11.6847 −0.566124
\(427\) 5.68466 0.275100
\(428\) − 8.00000i − 0.386695i
\(429\) −33.6155 −1.62297
\(430\) − 10.2462i − 0.494116i
\(431\) 9.36932i 0.451304i 0.974208 + 0.225652i \(0.0724512\pi\)
−0.974208 + 0.225652i \(0.927549\pi\)
\(432\) − 1.43845i − 0.0692073i
\(433\) 18.7386 0.900521 0.450261 0.892897i \(-0.351331\pi\)
0.450261 + 0.892897i \(0.351331\pi\)
\(434\) −2.56155 −0.122958
\(435\) 27.0540i 1.29714i
\(436\) 4.31534i 0.206667i
\(437\) − 2.87689i − 0.137621i
\(438\) 27.6847 1.32282
\(439\) − 24.0000i − 1.14546i −0.819745 0.572729i \(-0.805885\pi\)
0.819745 0.572729i \(-0.194115\pi\)
\(440\) 2.00000 0.0953463
\(441\) 3.56155 0.169598
\(442\) 27.0540i 1.28683i
\(443\) 8.00000 0.380091 0.190046 0.981775i \(-0.439136\pi\)
0.190046 + 0.981775i \(0.439136\pi\)
\(444\) −5.12311 −0.243132
\(445\) − 16.5616i − 0.785093i
\(446\) −2.31534 −0.109635
\(447\) − 21.1231i − 0.999089i
\(448\) − 1.00000i − 0.0472456i
\(449\) − 10.8769i − 0.513312i −0.966503 0.256656i \(-0.917379\pi\)
0.966503 0.256656i \(-0.0826208\pi\)
\(450\) 3.56155 0.167893
\(451\) 22.2462 1.04753
\(452\) 7.43845i 0.349875i
\(453\) 45.1231i 2.12007i
\(454\) − 17.9309i − 0.841537i
\(455\) −6.56155 −0.307610
\(456\) − 6.56155i − 0.307273i
\(457\) −40.1080 −1.87617 −0.938085 0.346404i \(-0.887403\pi\)
−0.938085 + 0.346404i \(0.887403\pi\)
\(458\) −1.36932 −0.0639840
\(459\) 5.93087 0.276829
\(460\) 1.12311 0.0523651
\(461\) −15.7538 −0.733727 −0.366864 0.930275i \(-0.619568\pi\)
−0.366864 + 0.930275i \(0.619568\pi\)
\(462\) 5.12311i 0.238348i
\(463\) 15.0540 0.699618 0.349809 0.936821i \(-0.386247\pi\)
0.349809 + 0.936821i \(0.386247\pi\)
\(464\) 10.5616i 0.490308i
\(465\) − 6.56155i − 0.304285i
\(466\) 2.80776i 0.130067i
\(467\) 14.0000 0.647843 0.323921 0.946084i \(-0.394999\pi\)
0.323921 + 0.946084i \(0.394999\pi\)
\(468\) −23.3693 −1.08025
\(469\) 1.12311i 0.0518602i
\(470\) 4.56155i 0.210409i
\(471\) − 18.8769i − 0.869801i
\(472\) −6.56155 −0.302020
\(473\) 20.4924i 0.942243i
\(474\) 44.4924 2.04360
\(475\) 2.56155 0.117532
\(476\) 4.12311 0.188982
\(477\) −6.00000 −0.274721
\(478\) −12.4924 −0.571390
\(479\) − 7.19224i − 0.328622i −0.986409 0.164311i \(-0.947460\pi\)
0.986409 0.164311i \(-0.0525400\pi\)
\(480\) 2.56155 0.116918
\(481\) 13.1231i 0.598362i
\(482\) − 1.36932i − 0.0623707i
\(483\) 2.87689i 0.130903i
\(484\) 7.00000 0.318182
\(485\) −9.68466 −0.439758
\(486\) − 22.2462i − 1.00911i
\(487\) 9.75379i 0.441986i 0.975275 + 0.220993i \(0.0709299\pi\)
−0.975275 + 0.220993i \(0.929070\pi\)
\(488\) 5.68466i 0.257332i
\(489\) 10.2462 0.463350
\(490\) 1.00000i 0.0451754i
\(491\) −28.1771 −1.27161 −0.635807 0.771848i \(-0.719333\pi\)
−0.635807 + 0.771848i \(0.719333\pi\)
\(492\) 28.4924 1.28454
\(493\) −43.5464 −1.96123
\(494\) −16.8078 −0.756217
\(495\) −7.12311 −0.320160
\(496\) − 2.56155i − 0.115017i
\(497\) 4.56155 0.204614
\(498\) − 31.3693i − 1.40569i
\(499\) 13.3693i 0.598493i 0.954176 + 0.299246i \(0.0967353\pi\)
−0.954176 + 0.299246i \(0.903265\pi\)
\(500\) 1.00000i 0.0447214i
\(501\) 59.8617 2.67443
\(502\) 12.4924 0.557564
\(503\) 22.7386i 1.01387i 0.861986 + 0.506933i \(0.169221\pi\)
−0.861986 + 0.506933i \(0.830779\pi\)
\(504\) 3.56155i 0.158644i
\(505\) − 10.0000i − 0.444994i
\(506\) −2.24621 −0.0998563
\(507\) 76.9848i 3.41902i
\(508\) −17.9309 −0.795554
\(509\) 28.8769 1.27995 0.639973 0.768397i \(-0.278946\pi\)
0.639973 + 0.768397i \(0.278946\pi\)
\(510\) 10.5616i 0.467673i
\(511\) −10.8078 −0.478107
\(512\) 1.00000 0.0441942
\(513\) 3.68466i 0.162682i
\(514\) −18.2462 −0.804806
\(515\) 11.1231i 0.490143i
\(516\) 26.2462i 1.15543i
\(517\) − 9.12311i − 0.401234i
\(518\) 2.00000 0.0878750
\(519\) 41.6155 1.82672
\(520\) − 6.56155i − 0.287743i
\(521\) 3.12311i 0.136826i 0.997657 + 0.0684129i \(0.0217935\pi\)
−0.997657 + 0.0684129i \(0.978206\pi\)
\(522\) − 37.6155i − 1.64639i
\(523\) 6.49242 0.283894 0.141947 0.989874i \(-0.454664\pi\)
0.141947 + 0.989874i \(0.454664\pi\)
\(524\) 4.00000i 0.174741i
\(525\) −2.56155 −0.111795
\(526\) 11.6847 0.509475
\(527\) 10.5616 0.460068
\(528\) −5.12311 −0.222955
\(529\) 21.7386 0.945158
\(530\) − 1.68466i − 0.0731769i
\(531\) 23.3693 1.01414
\(532\) 2.56155i 0.111057i
\(533\) − 72.9848i − 3.16132i
\(534\) 42.4233i 1.83584i
\(535\) −8.00000 −0.345870
\(536\) −1.12311 −0.0485108
\(537\) − 4.49242i − 0.193862i
\(538\) − 5.68466i − 0.245083i
\(539\) − 2.00000i − 0.0861461i
\(540\) −1.43845 −0.0619009
\(541\) − 31.8617i − 1.36984i −0.728617 0.684922i \(-0.759836\pi\)
0.728617 0.684922i \(-0.240164\pi\)
\(542\) −14.2462 −0.611927
\(543\) 57.6155 2.47252
\(544\) 4.12311i 0.176777i
\(545\) 4.31534 0.184849
\(546\) 16.8078 0.719306
\(547\) 2.56155i 0.109524i 0.998499 + 0.0547620i \(0.0174400\pi\)
−0.998499 + 0.0547620i \(0.982560\pi\)
\(548\) 23.1231 0.987770
\(549\) − 20.2462i − 0.864087i
\(550\) − 2.00000i − 0.0852803i
\(551\) − 27.0540i − 1.15254i
\(552\) −2.87689 −0.122449
\(553\) −17.3693 −0.738618
\(554\) 3.75379i 0.159483i
\(555\) 5.12311i 0.217464i
\(556\) 15.3693i 0.651804i
\(557\) 7.93087 0.336042 0.168021 0.985783i \(-0.446262\pi\)
0.168021 + 0.985783i \(0.446262\pi\)
\(558\) 9.12311i 0.386212i
\(559\) 67.2311 2.84357
\(560\) −1.00000 −0.0422577
\(561\) − 21.1231i − 0.891818i
\(562\) −6.31534 −0.266397
\(563\) 30.4924 1.28510 0.642551 0.766243i \(-0.277876\pi\)
0.642551 + 0.766243i \(0.277876\pi\)
\(564\) − 11.6847i − 0.492013i
\(565\) 7.43845 0.312938
\(566\) − 7.68466i − 0.323010i
\(567\) 7.00000i 0.293972i
\(568\) 4.56155i 0.191399i
\(569\) −33.0540 −1.38569 −0.692847 0.721084i \(-0.743644\pi\)
−0.692847 + 0.721084i \(0.743644\pi\)
\(570\) −6.56155 −0.274833
\(571\) − 7.12311i − 0.298093i −0.988830 0.149046i \(-0.952380\pi\)
0.988830 0.149046i \(-0.0476204\pi\)
\(572\) 13.1231i 0.548705i
\(573\) 33.6155i 1.40431i
\(574\) −11.1231 −0.464269
\(575\) − 1.12311i − 0.0468367i
\(576\) −3.56155 −0.148398
\(577\) −10.7386 −0.447055 −0.223528 0.974698i \(-0.571757\pi\)
−0.223528 + 0.974698i \(0.571757\pi\)
\(578\) −17.0000 −0.707107
\(579\) 57.6155 2.39442
\(580\) 10.5616 0.438545
\(581\) 12.2462i 0.508058i
\(582\) 24.8078 1.02831
\(583\) 3.36932i 0.139543i
\(584\) − 10.8078i − 0.447228i
\(585\) 23.3693i 0.966202i
\(586\) 9.93087 0.410240
\(587\) 11.7538 0.485131 0.242565 0.970135i \(-0.422011\pi\)
0.242565 + 0.970135i \(0.422011\pi\)
\(588\) − 2.56155i − 0.105637i
\(589\) 6.56155i 0.270364i
\(590\) 6.56155i 0.270135i
\(591\) −25.6155 −1.05368
\(592\) 2.00000i 0.0821995i
\(593\) −11.3693 −0.466882 −0.233441 0.972371i \(-0.574999\pi\)
−0.233441 + 0.972371i \(0.574999\pi\)
\(594\) 2.87689 0.118040
\(595\) − 4.12311i − 0.169031i
\(596\) −8.24621 −0.337778
\(597\) 3.68466 0.150803
\(598\) 7.36932i 0.301354i
\(599\) −23.3693 −0.954844 −0.477422 0.878674i \(-0.658429\pi\)
−0.477422 + 0.878674i \(0.658429\pi\)
\(600\) − 2.56155i − 0.104575i
\(601\) 16.8769i 0.688423i 0.938892 + 0.344211i \(0.111854\pi\)
−0.938892 + 0.344211i \(0.888146\pi\)
\(602\) − 10.2462i − 0.417604i
\(603\) 4.00000 0.162893
\(604\) 17.6155 0.716766
\(605\) − 7.00000i − 0.284590i
\(606\) 25.6155i 1.04056i
\(607\) 5.75379i 0.233539i 0.993159 + 0.116770i \(0.0372539\pi\)
−0.993159 + 0.116770i \(0.962746\pi\)
\(608\) −2.56155 −0.103885
\(609\) 27.0540i 1.09628i
\(610\) 5.68466 0.230165
\(611\) −29.9309 −1.21087
\(612\) − 14.6847i − 0.593592i
\(613\) 3.43845 0.138878 0.0694388 0.997586i \(-0.477879\pi\)
0.0694388 + 0.997586i \(0.477879\pi\)
\(614\) −22.4924 −0.907720
\(615\) − 28.4924i − 1.14893i
\(616\) 2.00000 0.0805823
\(617\) 25.5464i 1.02846i 0.857653 + 0.514230i \(0.171922\pi\)
−0.857653 + 0.514230i \(0.828078\pi\)
\(618\) − 28.4924i − 1.14613i
\(619\) − 21.6155i − 0.868801i −0.900720 0.434401i \(-0.856960\pi\)
0.900720 0.434401i \(-0.143040\pi\)
\(620\) −2.56155 −0.102874
\(621\) 1.61553 0.0648289
\(622\) 22.2462i 0.891992i
\(623\) − 16.5616i − 0.663525i
\(624\) 16.8078i 0.672849i
\(625\) 1.00000 0.0400000
\(626\) − 16.2462i − 0.649329i
\(627\) 13.1231 0.524086
\(628\) −7.36932 −0.294068
\(629\) −8.24621 −0.328798
\(630\) 3.56155 0.141896
\(631\) −13.7538 −0.547530 −0.273765 0.961797i \(-0.588269\pi\)
−0.273765 + 0.961797i \(0.588269\pi\)
\(632\) − 17.3693i − 0.690914i
\(633\) −56.3542 −2.23988
\(634\) − 1.36932i − 0.0543825i
\(635\) 17.9309i 0.711565i
\(636\) 4.31534i 0.171114i
\(637\) −6.56155 −0.259978
\(638\) −21.1231 −0.836272
\(639\) − 16.2462i − 0.642690i
\(640\) − 1.00000i − 0.0395285i
\(641\) 9.61553i 0.379791i 0.981804 + 0.189895i \(0.0608148\pi\)
−0.981804 + 0.189895i \(0.939185\pi\)
\(642\) 20.4924 0.808771
\(643\) 8.49242i 0.334908i 0.985880 + 0.167454i \(0.0535546\pi\)
−0.985880 + 0.167454i \(0.946445\pi\)
\(644\) 1.12311 0.0442566
\(645\) 26.2462 1.03344
\(646\) − 10.5616i − 0.415539i
\(647\) 35.3002 1.38779 0.693897 0.720074i \(-0.255892\pi\)
0.693897 + 0.720074i \(0.255892\pi\)
\(648\) −7.00000 −0.274986
\(649\) − 13.1231i − 0.515127i
\(650\) −6.56155 −0.257365
\(651\) − 6.56155i − 0.257168i
\(652\) − 4.00000i − 0.156652i
\(653\) 24.8769i 0.973508i 0.873539 + 0.486754i \(0.161819\pi\)
−0.873539 + 0.486754i \(0.838181\pi\)
\(654\) −11.0540 −0.432245
\(655\) 4.00000 0.156293
\(656\) − 11.1231i − 0.434284i
\(657\) 38.4924i 1.50173i
\(658\) 4.56155i 0.177828i
\(659\) −15.0540 −0.586420 −0.293210 0.956048i \(-0.594723\pi\)
−0.293210 + 0.956048i \(0.594723\pi\)
\(660\) 5.12311i 0.199417i
\(661\) 31.1231 1.21055 0.605274 0.796017i \(-0.293063\pi\)
0.605274 + 0.796017i \(0.293063\pi\)
\(662\) 18.5616 0.721415
\(663\) −69.3002 −2.69140
\(664\) −12.2462 −0.475245
\(665\) 2.56155 0.0993328
\(666\) − 7.12311i − 0.276015i
\(667\) −11.8617 −0.459288
\(668\) − 23.3693i − 0.904186i
\(669\) − 5.93087i − 0.229301i
\(670\) 1.12311i 0.0433894i
\(671\) −11.3693 −0.438908
\(672\) 2.56155 0.0988140
\(673\) 6.80776i 0.262420i 0.991355 + 0.131210i \(0.0418862\pi\)
−0.991355 + 0.131210i \(0.958114\pi\)
\(674\) − 24.5616i − 0.946076i
\(675\) 1.43845i 0.0553659i
\(676\) 30.0540 1.15592
\(677\) 29.3693i 1.12875i 0.825517 + 0.564377i \(0.190884\pi\)
−0.825517 + 0.564377i \(0.809116\pi\)
\(678\) −19.0540 −0.731764
\(679\) −9.68466 −0.371663
\(680\) 4.12311 0.158114
\(681\) 45.9309 1.76007
\(682\) 5.12311 0.196174
\(683\) − 3.19224i − 0.122148i −0.998133 0.0610738i \(-0.980548\pi\)
0.998133 0.0610738i \(-0.0194525\pi\)
\(684\) 9.12311 0.348831
\(685\) − 23.1231i − 0.883488i
\(686\) 1.00000i 0.0381802i
\(687\) − 3.50758i − 0.133822i
\(688\) 10.2462 0.390633
\(689\) 11.0540 0.421123
\(690\) 2.87689i 0.109521i
\(691\) − 16.6307i − 0.632661i −0.948649 0.316331i \(-0.897549\pi\)
0.948649 0.316331i \(-0.102451\pi\)
\(692\) − 16.2462i − 0.617588i
\(693\) −7.12311 −0.270584
\(694\) − 14.5616i − 0.552749i
\(695\) 15.3693 0.582991
\(696\) −27.0540 −1.02548
\(697\) 45.8617 1.73714
\(698\) −0.876894 −0.0331909
\(699\) −7.19224 −0.272035
\(700\) 1.00000i 0.0377964i
\(701\) 43.6155 1.64734 0.823668 0.567073i \(-0.191924\pi\)
0.823668 + 0.567073i \(0.191924\pi\)
\(702\) − 9.43845i − 0.356231i
\(703\) − 5.12311i − 0.193222i
\(704\) 2.00000i 0.0753778i
\(705\) −11.6847 −0.440070
\(706\) −13.1231 −0.493895
\(707\) − 10.0000i − 0.376089i
\(708\) − 16.8078i − 0.631674i
\(709\) 12.8078i 0.481006i 0.970648 + 0.240503i \(0.0773123\pi\)
−0.970648 + 0.240503i \(0.922688\pi\)
\(710\) 4.56155 0.171192
\(711\) 61.8617i 2.32000i
\(712\) 16.5616 0.620670
\(713\) 2.87689 0.107741
\(714\) 10.5616i 0.395256i
\(715\) 13.1231 0.490776
\(716\) −1.75379 −0.0655422
\(717\) − 32.0000i − 1.19506i
\(718\) −8.00000 −0.298557
\(719\) 32.1771i 1.20000i 0.799999 + 0.600001i \(0.204833\pi\)
−0.799999 + 0.600001i \(0.795167\pi\)
\(720\) 3.56155i 0.132731i
\(721\) 11.1231i 0.414246i
\(722\) −12.4384 −0.462911
\(723\) 3.50758 0.130448
\(724\) − 22.4924i − 0.835924i
\(725\) − 10.5616i − 0.392246i
\(726\) 17.9309i 0.665477i
\(727\) 16.4233 0.609106 0.304553 0.952495i \(-0.401493\pi\)
0.304553 + 0.952495i \(0.401493\pi\)
\(728\) − 6.56155i − 0.243187i
\(729\) 35.9848 1.33277
\(730\) −10.8078 −0.400013
\(731\) 42.2462i 1.56253i
\(732\) −14.5616 −0.538210
\(733\) −33.6155 −1.24162 −0.620809 0.783962i \(-0.713196\pi\)
−0.620809 + 0.783962i \(0.713196\pi\)
\(734\) 17.6155i 0.650201i
\(735\) −2.56155 −0.0944843
\(736\) 1.12311i 0.0413982i
\(737\) − 2.24621i − 0.0827403i
\(738\) 39.6155i 1.45827i
\(739\) −9.93087 −0.365313 −0.182656 0.983177i \(-0.558470\pi\)
−0.182656 + 0.983177i \(0.558470\pi\)
\(740\) 2.00000 0.0735215
\(741\) − 43.0540i − 1.58163i
\(742\) − 1.68466i − 0.0618458i
\(743\) 42.2462i 1.54986i 0.632045 + 0.774932i \(0.282216\pi\)
−0.632045 + 0.774932i \(0.717784\pi\)
\(744\) 6.56155 0.240558
\(745\) 8.24621i 0.302118i
\(746\) −2.49242 −0.0912541
\(747\) 43.6155 1.59581
\(748\) −8.24621 −0.301511
\(749\) −8.00000 −0.292314
\(750\) −2.56155 −0.0935347
\(751\) 45.6847i 1.66706i 0.552477 + 0.833528i \(0.313683\pi\)
−0.552477 + 0.833528i \(0.686317\pi\)
\(752\) −4.56155 −0.166343
\(753\) 32.0000i 1.16614i
\(754\) 69.3002i 2.52376i
\(755\) − 17.6155i − 0.641095i
\(756\) −1.43845 −0.0523158
\(757\) −44.4233 −1.61459 −0.807296 0.590147i \(-0.799070\pi\)
−0.807296 + 0.590147i \(0.799070\pi\)
\(758\) − 15.6155i − 0.567182i
\(759\) − 5.75379i − 0.208849i
\(760\) 2.56155i 0.0929173i
\(761\) −26.0000 −0.942499 −0.471250 0.882000i \(-0.656197\pi\)
−0.471250 + 0.882000i \(0.656197\pi\)
\(762\) − 45.9309i − 1.66390i
\(763\) 4.31534 0.156226
\(764\) 13.1231 0.474777
\(765\) −14.6847 −0.530925
\(766\) −30.8078 −1.11313
\(767\) −43.0540 −1.55459
\(768\) 2.56155i 0.0924321i
\(769\) 38.6695 1.39446 0.697229 0.716848i \(-0.254416\pi\)
0.697229 + 0.716848i \(0.254416\pi\)
\(770\) − 2.00000i − 0.0720750i
\(771\) − 46.7386i − 1.68325i
\(772\) − 22.4924i − 0.809520i
\(773\) 38.1080 1.37065 0.685324 0.728238i \(-0.259661\pi\)
0.685324 + 0.728238i \(0.259661\pi\)
\(774\) −36.4924 −1.31169
\(775\) 2.56155i 0.0920137i
\(776\) − 9.68466i − 0.347659i
\(777\) 5.12311i 0.183790i
\(778\) −23.1231 −0.829004
\(779\) 28.4924i 1.02085i
\(780\) 16.8078 0.601814
\(781\) −9.12311 −0.326450
\(782\) −4.63068 −0.165593
\(783\) 15.1922 0.542926
\(784\) −1.00000 −0.0357143
\(785\) 7.36932i 0.263022i
\(786\) −10.2462 −0.365470
\(787\) − 27.1922i − 0.969299i −0.874709 0.484649i \(-0.838947\pi\)
0.874709 0.484649i \(-0.161053\pi\)
\(788\) 10.0000i 0.356235i
\(789\) 29.9309i 1.06557i
\(790\) −17.3693 −0.617973
\(791\) 7.43845 0.264481
\(792\) − 7.12311i − 0.253109i
\(793\) 37.3002i 1.32457i
\(794\) 2.63068i 0.0933595i
\(795\) 4.31534 0.153049
\(796\) − 1.43845i − 0.0509844i
\(797\) −12.6307 −0.447402 −0.223701 0.974658i \(-0.571814\pi\)
−0.223701 + 0.974658i \(0.571814\pi\)
\(798\) −6.56155 −0.232276
\(799\) − 18.8078i − 0.665371i
\(800\) −1.00000 −0.0353553
\(801\) −58.9848 −2.08413
\(802\) 26.7386i 0.944174i
\(803\) 21.6155 0.762795
\(804\) − 2.87689i − 0.101460i
\(805\) − 1.12311i − 0.0395843i
\(806\) − 16.8078i − 0.592028i
\(807\) 14.5616 0.512591
\(808\) 10.0000 0.351799
\(809\) − 36.0000i − 1.26569i −0.774277 0.632846i \(-0.781886\pi\)
0.774277 0.632846i \(-0.218114\pi\)
\(810\) 7.00000i 0.245955i
\(811\) 44.9848i 1.57963i 0.613344 + 0.789816i \(0.289824\pi\)
−0.613344 + 0.789816i \(0.710176\pi\)
\(812\) 10.5616 0.370638
\(813\) − 36.4924i − 1.27985i
\(814\) −4.00000 −0.140200
\(815\) −4.00000 −0.140114
\(816\) −10.5616 −0.369728
\(817\) −26.2462 −0.918239
\(818\) −4.56155 −0.159491
\(819\) 23.3693i 0.816590i
\(820\) −11.1231 −0.388436
\(821\) 40.1771i 1.40219i 0.713068 + 0.701095i \(0.247305\pi\)
−0.713068 + 0.701095i \(0.752695\pi\)
\(822\) 59.2311i 2.06592i
\(823\) 0.630683i 0.0219842i 0.999940 + 0.0109921i \(0.00349897\pi\)
−0.999940 + 0.0109921i \(0.996501\pi\)
\(824\) −11.1231 −0.387492
\(825\) 5.12311 0.178364
\(826\) 6.56155i 0.228306i
\(827\) 28.9848i 1.00790i 0.863732 + 0.503951i \(0.168121\pi\)
−0.863732 + 0.503951i \(0.831879\pi\)
\(828\) − 4.00000i − 0.139010i
\(829\) −51.6155 −1.79268 −0.896341 0.443366i \(-0.853784\pi\)
−0.896341 + 0.443366i \(0.853784\pi\)
\(830\) 12.2462i 0.425072i
\(831\) −9.61553 −0.333559
\(832\) 6.56155 0.227481
\(833\) − 4.12311i − 0.142857i
\(834\) −39.3693 −1.36325
\(835\) −23.3693 −0.808729
\(836\) − 5.12311i − 0.177186i
\(837\) −3.68466 −0.127360
\(838\) − 6.87689i − 0.237558i
\(839\) − 14.5616i − 0.502721i −0.967894 0.251360i \(-0.919122\pi\)
0.967894 0.251360i \(-0.0808779\pi\)
\(840\) − 2.56155i − 0.0883820i
\(841\) −82.5464 −2.84643
\(842\) 20.7386 0.714701
\(843\) − 16.1771i − 0.557168i
\(844\) 22.0000i 0.757271i
\(845\) − 30.0540i − 1.03389i
\(846\) 16.2462 0.558556
\(847\) − 7.00000i − 0.240523i
\(848\) 1.68466 0.0578514
\(849\) 19.6847 0.675576
\(850\) − 4.12311i − 0.141421i
\(851\) −2.24621 −0.0769991
\(852\) −11.6847 −0.400310
\(853\) − 32.1080i − 1.09936i −0.835377 0.549678i \(-0.814751\pi\)
0.835377 0.549678i \(-0.185249\pi\)
\(854\) 5.68466 0.194525
\(855\) − 9.12311i − 0.312004i
\(856\) − 8.00000i − 0.273434i
\(857\) 34.6695i 1.18429i 0.805832 + 0.592144i \(0.201718\pi\)
−0.805832 + 0.592144i \(0.798282\pi\)
\(858\) −33.6155 −1.14762
\(859\) 44.6695 1.52410 0.762052 0.647516i \(-0.224192\pi\)
0.762052 + 0.647516i \(0.224192\pi\)
\(860\) − 10.2462i − 0.349393i
\(861\) − 28.4924i − 0.971019i
\(862\) 9.36932i 0.319120i
\(863\) −44.0000 −1.49778 −0.748889 0.662696i \(-0.769412\pi\)
−0.748889 + 0.662696i \(0.769412\pi\)
\(864\) − 1.43845i − 0.0489370i
\(865\) −16.2462 −0.552388
\(866\) 18.7386 0.636765
\(867\) − 43.5464i − 1.47891i
\(868\) −2.56155 −0.0869448
\(869\) 34.7386 1.17843
\(870\) 27.0540i 0.917216i
\(871\) −7.36932 −0.249700
\(872\) 4.31534i 0.146136i
\(873\) 34.4924i 1.16739i
\(874\) − 2.87689i − 0.0973124i
\(875\) 1.00000 0.0338062
\(876\) 27.6847 0.935378
\(877\) − 10.9848i − 0.370932i −0.982651 0.185466i \(-0.940621\pi\)
0.982651 0.185466i \(-0.0593794\pi\)
\(878\) − 24.0000i − 0.809961i
\(879\) 25.4384i 0.858018i
\(880\) 2.00000 0.0674200
\(881\) 20.2462i 0.682112i 0.940043 + 0.341056i \(0.110785\pi\)
−0.940043 + 0.341056i \(0.889215\pi\)
\(882\) 3.56155 0.119924
\(883\) 16.0000 0.538443 0.269221 0.963078i \(-0.413234\pi\)
0.269221 + 0.963078i \(0.413234\pi\)
\(884\) 27.0540i 0.909924i
\(885\) −16.8078 −0.564987
\(886\) 8.00000 0.268765
\(887\) − 32.0000i − 1.07445i −0.843437 0.537227i \(-0.819472\pi\)
0.843437 0.537227i \(-0.180528\pi\)
\(888\) −5.12311 −0.171920
\(889\) 17.9309i 0.601382i
\(890\) − 16.5616i − 0.555145i
\(891\) − 14.0000i − 0.469018i
\(892\) −2.31534 −0.0775234
\(893\) 11.6847 0.391012
\(894\) − 21.1231i − 0.706462i
\(895\) 1.75379i 0.0586227i
\(896\) − 1.00000i − 0.0334077i
\(897\) −18.8769 −0.630281
\(898\) − 10.8769i − 0.362967i
\(899\) 27.0540 0.902301
\(900\) 3.56155 0.118718
\(901\) 6.94602i 0.231406i
\(902\) 22.2462 0.740718
\(903\) 26.2462 0.873419
\(904\) 7.43845i 0.247399i
\(905\) −22.4924 −0.747673
\(906\) 45.1231i 1.49911i
\(907\) − 45.9309i − 1.52511i −0.646924 0.762555i \(-0.723945\pi\)
0.646924 0.762555i \(-0.276055\pi\)
\(908\) − 17.9309i − 0.595057i
\(909\) −35.6155 −1.18129
\(910\) −6.56155 −0.217513
\(911\) 57.3693i 1.90073i 0.311137 + 0.950365i \(0.399290\pi\)
−0.311137 + 0.950365i \(0.600710\pi\)
\(912\) − 6.56155i − 0.217275i
\(913\) − 24.4924i − 0.810581i
\(914\) −40.1080 −1.32665
\(915\) 14.5616i 0.481390i
\(916\) −1.36932 −0.0452435
\(917\) 4.00000 0.132092
\(918\) 5.93087 0.195748
\(919\) 4.49242 0.148191 0.0740957 0.997251i \(-0.476393\pi\)
0.0740957 + 0.997251i \(0.476393\pi\)
\(920\) 1.12311 0.0370277
\(921\) − 57.6155i − 1.89850i
\(922\) −15.7538 −0.518823
\(923\) 29.9309i 0.985187i
\(924\) 5.12311i 0.168538i
\(925\) − 2.00000i − 0.0657596i
\(926\) 15.0540 0.494704
\(927\) 39.6155 1.30114
\(928\) 10.5616i 0.346700i
\(929\) 33.8617i 1.11097i 0.831527 + 0.555484i \(0.187467\pi\)
−0.831527 + 0.555484i \(0.812533\pi\)
\(930\) − 6.56155i − 0.215162i
\(931\) 2.56155 0.0839515
\(932\) 2.80776i 0.0919714i
\(933\) −56.9848 −1.86560
\(934\) 14.0000 0.458094
\(935\) 8.24621i 0.269680i
\(936\) −23.3693 −0.763850
\(937\) −31.3693 −1.02479 −0.512395 0.858750i \(-0.671242\pi\)
−0.512395 + 0.858750i \(0.671242\pi\)
\(938\) 1.12311i 0.0366707i
\(939\) 41.6155 1.35807
\(940\) 4.56155i 0.148781i
\(941\) − 31.4384i − 1.02486i −0.858728 0.512432i \(-0.828745\pi\)
0.858728 0.512432i \(-0.171255\pi\)
\(942\) − 18.8769i − 0.615042i
\(943\) 12.4924 0.406809
\(944\) −6.56155 −0.213560
\(945\) 1.43845i 0.0467927i
\(946\) 20.4924i 0.666266i
\(947\) − 4.31534i − 0.140230i −0.997539 0.0701149i \(-0.977663\pi\)
0.997539 0.0701149i \(-0.0223366\pi\)
\(948\) 44.4924 1.44505
\(949\) − 70.9157i − 2.30202i
\(950\) 2.56155 0.0831077
\(951\) 3.50758 0.113741
\(952\) 4.12311 0.133631
\(953\) 48.2462 1.56285 0.781424 0.624000i \(-0.214494\pi\)
0.781424 + 0.624000i \(0.214494\pi\)
\(954\) −6.00000 −0.194257
\(955\) − 13.1231i − 0.424654i
\(956\) −12.4924 −0.404034
\(957\) − 54.1080i − 1.74906i
\(958\) − 7.19224i − 0.232371i
\(959\) − 23.1231i − 0.746684i
\(960\) 2.56155 0.0826738
\(961\) 24.4384 0.788337
\(962\) 13.1231i 0.423106i
\(963\) 28.4924i 0.918155i
\(964\) − 1.36932i − 0.0441027i
\(965\) −22.4924 −0.724057
\(966\) 2.87689i 0.0925626i
\(967\) 17.7538 0.570923 0.285462 0.958390i \(-0.407853\pi\)
0.285462 + 0.958390i \(0.407853\pi\)
\(968\) 7.00000 0.224989
\(969\) 27.0540 0.869099
\(970\) −9.68466 −0.310956
\(971\) −61.7926 −1.98302 −0.991510 0.130034i \(-0.958492\pi\)
−0.991510 + 0.130034i \(0.958492\pi\)
\(972\) − 22.2462i − 0.713548i
\(973\) 15.3693 0.492718
\(974\) 9.75379i 0.312532i
\(975\) − 16.8078i − 0.538279i
\(976\) 5.68466i 0.181961i
\(977\) 0.246211 0.00787700 0.00393850 0.999992i \(-0.498746\pi\)
0.00393850 + 0.999992i \(0.498746\pi\)
\(978\) 10.2462 0.327638
\(979\) 33.1231i 1.05862i
\(980\) 1.00000i 0.0319438i
\(981\) − 15.3693i − 0.490705i
\(982\) −28.1771 −0.899167
\(983\) − 26.2462i − 0.837124i −0.908188 0.418562i \(-0.862534\pi\)
0.908188 0.418562i \(-0.137466\pi\)
\(984\) 28.4924 0.908305
\(985\) 10.0000 0.318626
\(986\) −43.5464 −1.38680
\(987\) −11.6847 −0.371927
\(988\) −16.8078 −0.534726
\(989\) 11.5076i 0.365920i
\(990\) −7.12311 −0.226387
\(991\) 17.0540i 0.541737i 0.962616 + 0.270869i \(0.0873109\pi\)
−0.962616 + 0.270869i \(0.912689\pi\)
\(992\) − 2.56155i − 0.0813294i
\(993\) 47.5464i 1.50884i
\(994\) 4.56155 0.144684
\(995\) −1.43845 −0.0456018
\(996\) − 31.3693i − 0.993975i
\(997\) 33.3693i 1.05682i 0.848990 + 0.528408i \(0.177211\pi\)
−0.848990 + 0.528408i \(0.822789\pi\)
\(998\) 13.3693i 0.423198i
\(999\) 2.87689 0.0910209
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1190.2.c.f.1121.4 yes 4
17.16 even 2 inner 1190.2.c.f.1121.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1190.2.c.f.1121.1 4 17.16 even 2 inner
1190.2.c.f.1121.4 yes 4 1.1 even 1 trivial