Properties

Label 2-1098-1.1-c1-0-4
Degree $2$
Conductor $1098$
Sign $1$
Analytic cond. $8.76757$
Root an. cond. $2.96100$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 2·7-s − 8-s − 10-s − 2·11-s + 4·13-s − 2·14-s + 16-s − 17-s + 4·19-s + 20-s + 2·22-s + 3·23-s − 4·25-s − 4·26-s + 2·28-s + 2·29-s + 4·31-s − 32-s + 34-s + 2·35-s − 37-s − 4·38-s − 40-s + 4·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.755·7-s − 0.353·8-s − 0.316·10-s − 0.603·11-s + 1.10·13-s − 0.534·14-s + 1/4·16-s − 0.242·17-s + 0.917·19-s + 0.223·20-s + 0.426·22-s + 0.625·23-s − 4/5·25-s − 0.784·26-s + 0.377·28-s + 0.371·29-s + 0.718·31-s − 0.176·32-s + 0.171·34-s + 0.338·35-s − 0.164·37-s − 0.648·38-s − 0.158·40-s + 0.624·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1098 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1098 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1098\)    =    \(2 \cdot 3^{2} \cdot 61\)
Sign: $1$
Analytic conductor: \(8.76757\)
Root analytic conductor: \(2.96100\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1098,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.431111098\)
\(L(\frac12)\) \(\approx\) \(1.431111098\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
61 \( 1 + T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.835228703765265785943105604317, −9.007866832147803798553086276195, −8.237018475688922551029648913739, −7.60245567784740990417597755627, −6.55591130528069352896819785570, −5.69728244342077135331317273685, −4.79565635056518088996323913879, −3.43918150087291676647094176137, −2.22874177276732534348962813046, −1.08643652995918499542816592514, 1.08643652995918499542816592514, 2.22874177276732534348962813046, 3.43918150087291676647094176137, 4.79565635056518088996323913879, 5.69728244342077135331317273685, 6.55591130528069352896819785570, 7.60245567784740990417597755627, 8.237018475688922551029648913739, 9.007866832147803798553086276195, 9.835228703765265785943105604317

Graph of the $Z$-function along the critical line