Properties

Label 2-106-1.1-c1-0-2
Degree $2$
Conductor $106$
Sign $1$
Analytic cond. $0.846414$
Root an. cond. $0.920007$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s − 4·7-s + 8-s − 2·9-s + 12-s + 5·13-s − 4·14-s + 16-s − 3·17-s − 2·18-s − 19-s − 4·21-s + 3·23-s + 24-s − 5·25-s + 5·26-s − 5·27-s − 4·28-s + 9·29-s − 4·31-s + 32-s − 3·34-s − 2·36-s + 5·37-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s − 1.51·7-s + 0.353·8-s − 2/3·9-s + 0.288·12-s + 1.38·13-s − 1.06·14-s + 1/4·16-s − 0.727·17-s − 0.471·18-s − 0.229·19-s − 0.872·21-s + 0.625·23-s + 0.204·24-s − 25-s + 0.980·26-s − 0.962·27-s − 0.755·28-s + 1.67·29-s − 0.718·31-s + 0.176·32-s − 0.514·34-s − 1/3·36-s + 0.821·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 106 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 106 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(106\)    =    \(2 \cdot 53\)
Sign: $1$
Analytic conductor: \(0.846414\)
Root analytic conductor: \(0.920007\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 106,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.524798432\)
\(L(\frac12)\) \(\approx\) \(1.524798432\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
53 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.48097305287934545041204893811, −13.15344609438075689944845079286, −11.81761494303416970928767268639, −10.69149667428673846399677584241, −9.381217023375044891193605681246, −8.357926167105308090415107881051, −6.72640894491877368549073868160, −5.85130331497128657353090562352, −3.90015209017905831393374696535, −2.81073095887439436341819860040, 2.81073095887439436341819860040, 3.90015209017905831393374696535, 5.85130331497128657353090562352, 6.72640894491877368549073868160, 8.357926167105308090415107881051, 9.381217023375044891193605681246, 10.69149667428673846399677584241, 11.81761494303416970928767268639, 13.15344609438075689944845079286, 13.48097305287934545041204893811

Graph of the $Z$-function along the critical line