L(s) = 1 | + 2·3-s − 2·5-s + 6·11-s + 2·13-s − 4·15-s + 10·19-s + 6·23-s + 3·25-s − 2·27-s − 4·29-s + 6·31-s + 12·33-s + 8·37-s + 4·39-s − 16·41-s + 2·43-s + 16·47-s − 2·49-s + 16·53-s − 12·55-s + 20·57-s + 14·59-s − 4·61-s − 4·65-s − 4·67-s + 12·69-s − 6·71-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.894·5-s + 1.80·11-s + 0.554·13-s − 1.03·15-s + 2.29·19-s + 1.25·23-s + 3/5·25-s − 0.384·27-s − 0.742·29-s + 1.07·31-s + 2.08·33-s + 1.31·37-s + 0.640·39-s − 2.49·41-s + 0.304·43-s + 2.33·47-s − 2/7·49-s + 2.19·53-s − 1.61·55-s + 2.64·57-s + 1.82·59-s − 0.512·61-s − 0.496·65-s − 0.488·67-s + 1.44·69-s − 0.712·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.621562708\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.621562708\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.999379055087354470562182893044, −9.607289652788812170525813313921, −9.061387198178810891905373000907, −8.924555022196628011050957817107, −8.533282882079795593937326184557, −8.267917722343081265173796207555, −7.54007788811215094041258116486, −7.31366823778085007945657570058, −6.95971742468071165864179048534, −6.50762305406485901185523222796, −5.73974034555109740290873394545, −5.51871229711353571803336379500, −4.79262259341883547799046643314, −4.20298920860596348802360263558, −3.79407174757904391751139668913, −3.40981136754528865536639413729, −2.93705634094810328189287060876, −2.46232651342925130187797079509, −1.29342481061562879556021312902, −0.983973771721332173838433557496,
0.983973771721332173838433557496, 1.29342481061562879556021312902, 2.46232651342925130187797079509, 2.93705634094810328189287060876, 3.40981136754528865536639413729, 3.79407174757904391751139668913, 4.20298920860596348802360263558, 4.79262259341883547799046643314, 5.51871229711353571803336379500, 5.73974034555109740290873394545, 6.50762305406485901185523222796, 6.95971742468071165864179048534, 7.31366823778085007945657570058, 7.54007788811215094041258116486, 8.267917722343081265173796207555, 8.533282882079795593937326184557, 8.924555022196628011050957817107, 9.061387198178810891905373000907, 9.607289652788812170525813313921, 9.999379055087354470562182893044