L(s) = 1 | + 3-s + 9-s + 4·11-s + 2·17-s + 12·19-s + 2·25-s + 27-s + 4·33-s + 10·41-s − 10·49-s + 2·51-s + 12·57-s + 12·59-s − 16·67-s + 12·73-s + 2·75-s + 81-s − 4·83-s + 2·89-s + 4·99-s + 28·107-s − 6·113-s − 10·121-s + 10·123-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s + 1.20·11-s + 0.485·17-s + 2.75·19-s + 2/5·25-s + 0.192·27-s + 0.696·33-s + 1.56·41-s − 1.42·49-s + 0.280·51-s + 1.58·57-s + 1.56·59-s − 1.95·67-s + 1.40·73-s + 0.230·75-s + 1/9·81-s − 0.439·83-s + 0.211·89-s + 0.402·99-s + 2.70·107-s − 0.564·113-s − 0.909·121-s + 0.901·123-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.833989408\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.833989408\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.67276898837903548687161696968, −7.53973662405198226112337542451, −7.01985631140023666271819427917, −6.67218275869700130821746322088, −6.02971056732046220646829817602, −5.76213423670232652004604237965, −5.08647324436203267742345301763, −4.84835176806430157925999829696, −4.11775929230338519280955900768, −3.71581183706563415842757588227, −3.20300572831645822036136259445, −2.89188628105598775186645079261, −2.09471433202922370037898838358, −1.29392878724921794350000779518, −0.931196891152883060137580669237,
0.931196891152883060137580669237, 1.29392878724921794350000779518, 2.09471433202922370037898838358, 2.89188628105598775186645079261, 3.20300572831645822036136259445, 3.71581183706563415842757588227, 4.11775929230338519280955900768, 4.84835176806430157925999829696, 5.08647324436203267742345301763, 5.76213423670232652004604237965, 6.02971056732046220646829817602, 6.67218275869700130821746322088, 7.01985631140023666271819427917, 7.53973662405198226112337542451, 7.67276898837903548687161696968