Properties

Label 4-975-1.1-c1e2-0-0
Degree $4$
Conductor $975$
Sign $1$
Analytic cond. $0.0621668$
Root an. cond. $0.499332$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4-s − 2·7-s + 2·11-s + 12-s − 5·13-s − 3·16-s + 2·17-s + 4·19-s + 2·21-s + 6·23-s − 5·25-s + 4·27-s + 2·28-s + 4·29-s + 4·31-s − 2·33-s + 2·37-s + 5·39-s − 6·41-s − 6·43-s − 2·44-s − 8·47-s + 3·48-s − 2·49-s − 2·51-s + 5·52-s + ⋯
L(s)  = 1  − 0.577·3-s − 1/2·4-s − 0.755·7-s + 0.603·11-s + 0.288·12-s − 1.38·13-s − 3/4·16-s + 0.485·17-s + 0.917·19-s + 0.436·21-s + 1.25·23-s − 25-s + 0.769·27-s + 0.377·28-s + 0.742·29-s + 0.718·31-s − 0.348·33-s + 0.328·37-s + 0.800·39-s − 0.937·41-s − 0.914·43-s − 0.301·44-s − 1.16·47-s + 0.433·48-s − 2/7·49-s − 0.280·51-s + 0.693·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(975\)    =    \(3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(0.0621668\)
Root analytic conductor: \(0.499332\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 975,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3987858446\)
\(L(\frac12)\) \(\approx\) \(0.3987858446\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 2 T + p T^{2} ) \)
5$C_2$ \( 1 + p T^{2} \)
13$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 4 T + p T^{2} ) \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \) 2.2.a_b
7$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.7.c_g
11$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.11.ac_ac
17$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.17.ac_ao
19$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.19.ae_g
23$D_{4}$ \( 1 - 6 T + 22 T^{2} - 6 p T^{3} + p^{2} T^{4} \) 2.23.ag_w
29$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.29.ae_ac
31$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.31.ae_be
37$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.37.ac_c
41$D_{4}$ \( 1 + 6 T + 34 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.41.g_bi
43$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.43.g_bu
47$D_{4}$ \( 1 + 8 T + 82 T^{2} + 8 p T^{3} + p^{2} T^{4} \) 2.47.i_de
53$D_{4}$ \( 1 - 2 T + 34 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.53.ac_bi
59$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.59.c_dq
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.61.a_w
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.67.c_cc
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.71.ac_dq
73$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.73.c_co
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.79.a_dq
83$D_{4}$ \( 1 - 12 T + 82 T^{2} - 12 p T^{3} + p^{2} T^{4} \) 2.83.am_de
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.89.g_ec
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 18 T + p T^{2} ) \) 2.97.k_by
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.3063585959, −19.1415602959, −18.2259323823, −17.7908318312, −17.2639085110, −16.6630725064, −16.2824956198, −15.4915962947, −14.9049769793, −14.1875069081, −13.6228164916, −13.0184463465, −12.2003267383, −11.8465758768, −11.1501600679, −10.0291431575, −9.76490738467, −9.03038832598, −8.08310694870, −7.03174084463, −6.49691372712, −5.30564381608, −4.59858608848, −3.11895266887, 3.11895266887, 4.59858608848, 5.30564381608, 6.49691372712, 7.03174084463, 8.08310694870, 9.03038832598, 9.76490738467, 10.0291431575, 11.1501600679, 11.8465758768, 12.2003267383, 13.0184463465, 13.6228164916, 14.1875069081, 14.9049769793, 15.4915962947, 16.2824956198, 16.6630725064, 17.2639085110, 17.7908318312, 18.2259323823, 19.1415602959, 19.3063585959

Graph of the $Z$-function along the critical line