Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 8 x + 82 x^{2} + 376 x^{3} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.469973079944$, $\pm0.737002613544$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.928256.1 |
Galois group: | $D_{4}$ |
Jacobians: | $120$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2676$ | $5105808$ | $10745277300$ | $23812508196864$ | $52592162669898996$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $56$ | $2310$ | $103496$ | $4879934$ | $229314616$ | $10779340230$ | $506625243208$ | $23811270308734$ | $1119130450035512$ | $52599132687260550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=16 x^6+36 x^5+36 x^4+32 x^3+11 x^2+41 x+40$
- $y^2=39 x^6+13 x^5+x^4+6 x^3+21 x^2+35 x+18$
- $y^2=12 x^6+24 x^5+35 x^4+38 x^3+24 x^2+13 x+41$
- $y^2=38 x^6+32 x^5+20 x^4+25 x^3+37 x^2+21 x+33$
- $y^2=32 x^6+19 x^5+13 x^4+42 x^3+44 x^2+38 x+13$
- $y^2=8 x^6+29 x^5+17 x^4+35 x^3+16 x^2+29 x+33$
- $y^2=4 x^6+35 x^5+41 x^4+46 x^3+7 x^2+12 x+9$
- $y^2=2 x^6+7 x^5+2 x^4+37 x^2+23 x+25$
- $y^2=7 x^6+9 x^5+x^4+11 x^3+8 x^2+39 x+24$
- $y^2=26 x^6+11 x^5+10 x^4+13 x^3+8 x^2+44 x+34$
- $y^2=42 x^6+20 x^5+16 x^4+32 x^3+36 x^2+45 x+42$
- $y^2=10 x^6+8 x^5+29 x^4+6 x^3+40 x^2+43 x+7$
- $y^2=4 x^6+43 x^5+4 x^4+34 x^3+8 x^2+36 x+20$
- $y^2=36 x^6+42 x^5+6 x^4+12 x^3+36 x^2+46 x+21$
- $y^2=33 x^6+6 x^5+28 x^4+7 x^3+11 x^2+37 x+34$
- $y^2=31 x^6+22 x^5+45 x^4+12 x^3+5 x^2+3 x+1$
- $y^2=35 x^6+42 x^5+46 x^4+19 x^3+7 x^2+12 x+9$
- $y^2=29 x^6+40 x^5+32 x^4+31 x^3+30 x^2+36 x+46$
- $y^2=4 x^6+23 x^5+22 x^4+20 x^3+5 x^2+26 x+21$
- $y^2=38 x^5+15 x^4+16 x^3+16 x^2+35 x+10$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is 4.0.928256.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.ai_de | $2$ | (not in LMFDB) |