Invariants
| Base field: | $\F_{11}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 6 x + 11 x^{2} )( 1 + 4 x + 11 x^{2} )$ |
| $1 - 2 x - 2 x^{2} - 22 x^{3} + 121 x^{4}$ | |
| Frobenius angles: | $\pm0.140218899004$, $\pm0.706037166300$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $14$ |
| Isomorphism classes: | 104 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $96$ | $13824$ | $1660896$ | $218087424$ | $26001809376$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $10$ | $114$ | $1246$ | $14894$ | $161450$ | $1771938$ | $19504670$ | $214372894$ | $2357970826$ | $25937838354$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):
- $y^2=9 x^6+7 x^5+2 x^4+4 x^3+5 x^2+2 x+3$
- $y^2=10 x^5+7 x^4+2 x^3+3 x^2+10 x+1$
- $y^2=10 x^5+2 x^4+2 x^3+2 x^2+3 x+5$
- $y^2=x^6+9 x^5+2 x^4+5 x^3+7 x^2+10 x+1$
- $y^2=8 x^6+7 x^5+9 x^3+6 x^2+1$
- $y^2=10 x^5+3 x^4+5 x^3+2 x+2$
- $y^2=5 x^6+6 x^5+8 x^4+2 x^3+x^2+6 x+1$
- $y^2=9 x^6+2 x^5+5 x^4+6 x^3+9 x^2+3 x+6$
- $y^2=2 x^6+x^5+x^4+3 x^3+5 x+10$
- $y^2=3 x^6+9 x^5+6 x^4+5 x^3+x^2+8 x+8$
- $y^2=6 x^5+3 x^4+3 x^3+5 x^2+2 x$
- $y^2=3 x^6+8 x^5+2 x^4+9 x^3+10 x^2+7 x+1$
- $y^2=7 x^6+3 x^5+3 x^4+x^3+3 x^2+3 x+7$
- $y^2=5 x^5+9 x^4+x^3+2 x^2+2 x+4$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11}$.
Endomorphism algebra over $\F_{11}$| The isogeny class factors as 1.11.ag $\times$ 1.11.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.11.ak_bu | $2$ | 2.121.ai_gc |
| 2.11.c_ac | $2$ | 2.121.ai_gc |
| 2.11.k_bu | $2$ | 2.121.ai_gc |