Dirichlet series
L(s) = 1 | − 2-s − 3-s + 5-s + 6-s − 7-s − 8-s − 3·9-s − 10-s + 2·11-s − 3·13-s + 14-s − 15-s − 16-s + 8·17-s + 3·18-s − 5·19-s + 21-s − 2·22-s + 5·23-s + 24-s + 3·25-s + 3·26-s + 4·27-s − 3·29-s + 30-s + 4·31-s + 6·32-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 0.447·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s − 9-s − 0.316·10-s + 0.603·11-s − 0.832·13-s + 0.267·14-s − 0.258·15-s − 1/4·16-s + 1.94·17-s + 0.707·18-s − 1.14·19-s + 0.218·21-s − 0.426·22-s + 1.04·23-s + 0.204·24-s + 3/5·25-s + 0.588·26-s + 0.769·27-s − 0.557·29-s + 0.182·30-s + 0.718·31-s + 1.06·32-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s)=\mathstrut & 713 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 713 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Invariants
Degree: | \(4\) |
Conductor: | \(713\) = \(23 \cdot 31\) |
Sign: | $1$ |
Analytic conductor: | \(0.0454614\) |
Root analytic conductor: | \(0.461754\) |
Motivic weight: | \(1\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | yes |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((4,\ 713,\ (\ :1/2, 1/2),\ 1)\) |
Particular Values
\(L(1)\) | \(\approx\) | \(0.2858010009\) |
\(L(\frac12)\) | \(\approx\) | \(0.2858010009\) |
\(L(\frac{3}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$ | $\Gal(F_p)$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | |
---|---|---|---|---|
bad | 23 | $C_1$$\times$$C_2$ | \( ( 1 + T )( 1 - 6 T + p T^{2} ) \) | |
31 | $C_1$$\times$$C_2$ | \( ( 1 + T )( 1 - 5 T + p T^{2} ) \) | ||
good | 2 | $D_{4}$ | \( 1 + T + T^{2} + p T^{3} + p^{2} T^{4} \) | 2.2.b_b |
3 | $C_2$$\times$$C_2$ | \( ( 1 - T + p T^{2} )( 1 + 2 T + p T^{2} ) \) | 2.3.b_e | |
5 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) | 2.5.ab_ac | |
7 | $D_{4}$ | \( 1 + T - 4 T^{2} + p T^{3} + p^{2} T^{4} \) | 2.7.b_ae | |
11 | $D_{4}$ | \( 1 - 2 T + 10 T^{2} - 2 p T^{3} + p^{2} T^{4} \) | 2.11.ac_k | |
13 | $D_{4}$ | \( 1 + 3 T + 4 T^{2} + 3 p T^{3} + p^{2} T^{4} \) | 2.13.d_e | |
17 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) | 2.17.ai_bi | |
19 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) | 2.19.f_y | |
29 | $D_{4}$ | \( 1 + 3 T + 22 T^{2} + 3 p T^{3} + p^{2} T^{4} \) | 2.29.d_w | |
37 | $C_2^2$ | \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \) | 2.37.ac_c | |
41 | $D_{4}$ | \( 1 + 2 T + 7 T^{2} + 2 p T^{3} + p^{2} T^{4} \) | 2.41.c_h | |
43 | $C_2$$\times$$C_2$ | \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) | 2.43.m_ec | |
47 | $D_{4}$ | \( 1 - T + 70 T^{2} - p T^{3} + p^{2} T^{4} \) | 2.47.ab_cs | |
53 | $D_{4}$ | \( 1 - 6 T - 2 T^{2} - 6 p T^{3} + p^{2} T^{4} \) | 2.53.ag_ac | |
59 | $C_2$$\times$$C_2$ | \( ( 1 + 5 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) | 2.59.r_gw | |
61 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) | 2.61.a_cg | |
67 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) | 2.67.i_fu | |
71 | $C_2$$\times$$C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 15 T + p T^{2} ) \) | 2.71.m_dt | |
73 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) | 2.73.b_ea | |
79 | $D_{4}$ | \( 1 - 6 T + 70 T^{2} - 6 p T^{3} + p^{2} T^{4} \) | 2.79.ag_cs | |
83 | $D_{4}$ | \( 1 - 4 T - 2 T^{2} - 4 p T^{3} + p^{2} T^{4} \) | 2.83.ae_ac | |
89 | $D_{4}$ | \( 1 - 4 T - 38 T^{2} - 4 p T^{3} + p^{2} T^{4} \) | 2.89.ae_abm | |
97 | $C_2$$\times$$C_2$ | \( ( 1 - 17 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | 2.97.al_do | |
show more | ||||
show less |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.9603470253, −19.3036723788, −18.8205032164, −18.3765391565, −17.5876892575, −17.0444561669, −16.8528095293, −16.4414817216, −15.0906051486, −14.9321084323, −14.1452985158, −13.4466415756, −12.5673022921, −11.9624181860, −11.4887541028, −10.4863316421, −9.97365694149, −9.12035967210, −8.69813537947, −7.63920381534, −6.55888662593, −5.89237621925, −4.89497515651, −3.04958077549, 3.04958077549, 4.89497515651, 5.89237621925, 6.55888662593, 7.63920381534, 8.69813537947, 9.12035967210, 9.97365694149, 10.4863316421, 11.4887541028, 11.9624181860, 12.5673022921, 13.4466415756, 14.1452985158, 14.9321084323, 15.0906051486, 16.4414817216, 16.8528095293, 17.0444561669, 17.5876892575, 18.3765391565, 18.8205032164, 19.3036723788, 19.9603470253