Invariants
| Base field: | $\F_{17}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 17 x^{2} )( 1 + 17 x^{2} )$ |
| $1 - 8 x + 34 x^{2} - 136 x^{3} + 289 x^{4}$ | |
| Frobenius angles: | $\pm0.0779791303774$, $\pm0.5$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $16$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $180$ | $84240$ | $23636340$ | $6900940800$ | $2014849494900$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $10$ | $294$ | $4810$ | $82622$ | $1419050$ | $24146406$ | $410344490$ | $6975653758$ | $118588284490$ | $2015998927014$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=6 x^6+3 x^5+7 x^4+8 x^3+3 x+7$
- $y^2=13 x^6+15 x^5+13 x^4+14 x^3+9 x^2+8 x+5$
- $y^2=16 x^6+3 x^5+10 x^4+12 x^3+3 x^2+12 x+9$
- $y^2=4 x^6+15 x^5+16 x^4+7 x^3+16 x^2+15 x+4$
- $y^2=7 x^6+8 x^5+16 x^4+x^3+15 x^2+12 x+7$
- $y^2=x^6+11 x^5+2 x^4+6 x^3+13 x^2+16 x+5$
- $y^2=14 x^6+6 x^5+16 x^4+16 x^3+10 x^2+11 x+10$
- $y^2=10 x^6+12 x^5+7 x^4+14 x^3+14 x^2+6$
- $y^2=15 x^6+2 x^5+7 x^3+2 x^2+8 x+7$
- $y^2=11 x^6+14 x^5+9 x^4+6 x^3+9 x+16$
- $y^2=10 x^6+x^5+x^4+11 x^3+10 x^2+5 x+2$
- $y^2=3 x^6+2 x^5+14 x^4+x^3+8 x^2+6 x+14$
- $y^2=12 x^6+8 x^5+10 x^4+3 x^3+6 x^2+9 x+3$
- $y^2=3 x^6+9 x^5+x^4+x^2+9 x+3$
- $y^2=7 x^6+7 x^5+x^4+11 x^3+3 x^2+6 x+11$
- $y^2=8 x^6+11 x^5+16 x^4+11 x^3+6 x^2+11 x+10$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{2}}$.
Endomorphism algebra over $\F_{17}$| The isogeny class factors as 1.17.ai $\times$ 1.17.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{17^{2}}$ is 1.289.abe $\times$ 1.289.bi. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.17.i_bi | $2$ | (not in LMFDB) |
| 2.17.ac_bi | $4$ | (not in LMFDB) |
| 2.17.c_bi | $4$ | (not in LMFDB) |